Question #122226
(x-4y-9)dx+(4x+y-2)dy=0
1
Expert's answer
2020-06-15T19:14:25-0400

(x4y9)dx+(4x+y2)dy=0(x-4y-9)dx+(4x+y-2)dy=0

Find the solution of system equation

{x4y=94x+y=2{x=1y=2\left\{\begin{matrix} x-4y=9 \\ 4x+y=2 \end{matrix}\right.\\ \left\{\begin{matrix} x=1 \\ y=-2 \end{matrix}\right.

Make a replacement

{x=t+1y=z(t)2\left\{\begin{matrix} x=t+1 \\ y=z(t)-2 \end{matrix}\right.

and input in equation

z=t+14(z2)94(t+1)+z22z=t4z4t+zz'=-\frac{t+1-4(z-2)-9}{4(t+1)+z-2-2}\\ z'=-\frac{t-4z}{4t+z}

Make a replacement

z=tu(t)tu+u=t4tu4t+tutu=4u1u+4utu=u21u+4u+4u2+1du=dttuu2+1+4u2+1du=dtt12lnu2+1+4arctanu=lnt+lnCu2+1e4arctanu=Ctz=t\cdot u(t)\\ tu'+u=-\frac{t-4tu}{4t+tu}\\ tu'=\frac{4u-1}{u+4}-u\\ tu'=\frac{-u^2-1}{u+4}\\ \frac{u+4}{u^2+1}du=-\frac{dt}{t}\\ \int{\frac{u}{u^2+1}+\frac{4}{u^2+1}}du=-\int\frac{dt}{t}\\ \frac{1}{2}\ln|u^2+1|+4\arctan u=-\ln|t|+\ln|C|\\ \sqrt{u^2+1}\cdot e^{4\arctan u}=\frac{C}{t}

Then general solution is

(y+2x1)2+1e4arctany+2x1=Cx1\sqrt{(\frac{y+2}{x-1})^2+1}\cdot e^{4\arctan \frac{y+2}{x-1}}=\frac{C}{x-1}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS