( x − 4 y − 9 ) d x + ( 4 x + y − 2 ) d y = 0 (x-4y-9)dx+(4x+y-2)dy=0 ( x − 4 y − 9 ) d x + ( 4 x + y − 2 ) d y = 0
Find the solution of system equation
{ x − 4 y = 9 4 x + y = 2 { x = 1 y = − 2 \left\{\begin{matrix}
x-4y=9 \\
4x+y=2
\end{matrix}\right.\\
\left\{\begin{matrix}
x=1 \\
y=-2
\end{matrix}\right. { x − 4 y = 9 4 x + y = 2 { x = 1 y = − 2
Make a replacement
{ x = t + 1 y = z ( t ) − 2 \left\{\begin{matrix}
x=t+1 \\
y=z(t)-2
\end{matrix}\right. { x = t + 1 y = z ( t ) − 2
and input in equation
z ′ = − t + 1 − 4 ( z − 2 ) − 9 4 ( t + 1 ) + z − 2 − 2 z ′ = − t − 4 z 4 t + z z'=-\frac{t+1-4(z-2)-9}{4(t+1)+z-2-2}\\
z'=-\frac{t-4z}{4t+z} z ′ = − 4 ( t + 1 ) + z − 2 − 2 t + 1 − 4 ( z − 2 ) − 9 z ′ = − 4 t + z t − 4 z
Make a replacement
z = t ⋅ u ( t ) t u ′ + u = − t − 4 t u 4 t + t u t u ′ = 4 u − 1 u + 4 − u t u ′ = − u 2 − 1 u + 4 u + 4 u 2 + 1 d u = − d t t ∫ u u 2 + 1 + 4 u 2 + 1 d u = − ∫ d t t 1 2 ln ∣ u 2 + 1 ∣ + 4 arctan u = − ln ∣ t ∣ + ln ∣ C ∣ u 2 + 1 ⋅ e 4 arctan u = C t z=t\cdot u(t)\\
tu'+u=-\frac{t-4tu}{4t+tu}\\
tu'=\frac{4u-1}{u+4}-u\\
tu'=\frac{-u^2-1}{u+4}\\
\frac{u+4}{u^2+1}du=-\frac{dt}{t}\\
\int{\frac{u}{u^2+1}+\frac{4}{u^2+1}}du=-\int\frac{dt}{t}\\
\frac{1}{2}\ln|u^2+1|+4\arctan u=-\ln|t|+\ln|C|\\
\sqrt{u^2+1}\cdot e^{4\arctan u}=\frac{C}{t} z = t ⋅ u ( t ) t u ′ + u = − 4 t + t u t − 4 t u t u ′ = u + 4 4 u − 1 − u t u ′ = u + 4 − u 2 − 1 u 2 + 1 u + 4 d u = − t d t ∫ u 2 + 1 u + u 2 + 1 4 d u = − ∫ t d t 2 1 ln ∣ u 2 + 1∣ + 4 arctan u = − ln ∣ t ∣ + ln ∣ C ∣ u 2 + 1 ⋅ e 4 a r c t a n u = t C
Then general solution is
( y + 2 x − 1 ) 2 + 1 ⋅ e 4 arctan y + 2 x − 1 = C x − 1 \sqrt{(\frac{y+2}{x-1})^2+1}\cdot e^{4\arctan \frac{y+2}{x-1}}=\frac{C}{x-1} ( x − 1 y + 2 ) 2 + 1 ⋅ e 4 a r c t a n x − 1 y + 2 = x − 1 C
Comments