(x−4y−9)dx+(4x+y−2)dy=0
Find the solution of system equation
{x−4y=94x+y=2{x=1y=−2
Make a replacement
{x=t+1y=z(t)−2
and input in equation
z′=−4(t+1)+z−2−2t+1−4(z−2)−9z′=−4t+zt−4z
Make a replacement
z=t⋅u(t)tu′+u=−4t+tut−4tutu′=u+44u−1−utu′=u+4−u2−1u2+1u+4du=−tdt∫u2+1u+u2+14du=−∫tdt21ln∣u2+1∣+4arctanu=−ln∣t∣+ln∣C∣u2+1⋅e4arctanu=tC
Then general solution is
(x−1y+2)2+1⋅e4arctanx−1y+2=x−1C
Comments