dx(ysin2x)=(1+y2+cos2x)dyysin2xdx−(1+y2+cos2x)dy=0P=ysin2xQ=−(1+y2+cos2x)∂y∂F=sin2x∂x∂Q=−2cosx(−sinx)=sin2x
Then ∃ function u(x,y) :
∂x∂u=P=ysin2x∂y∂u=Q=−(1+y2+cos2x)u(x,y)=∫ysin2xdx=−21ycos2x+ψ(y)∂y∂u=−21cos2x+ψ′(y)==−21(2cos2x−1)+ψ′(y)==−cos2x+0.5+ψ′(y)−cos2x+0.5+ψ′(y)=−1−y2−cos2xψ′(y)=−1.5−y2ψ(y)=−1.5y−3y3
Then
u(x,y)=−0.5ycos2x−1.5y−3y3
solution of equation is
−0.5ycos2x−1.5y−3y3=c
Comments