Question #122149
dx( y sin2x) = [1+y^2+cos^x]dy
1
Expert's answer
2020-06-15T17:09:02-0400

dx(ysin2x)=(1+y2+cos2x)dyysin2xdx(1+y2+cos2x)dy=0P=ysin2xQ=(1+y2+cos2x)Fy=sin2xQx=2cosx(sinx)=sin2xdx(y\sin2x)=(1+y^2+\cos^2 x)dy\\ y\sin2xdx-(1+y^2+\cos^2 x)dy=0\\ P=y\sin 2x\\ Q=-(1+y^2+\cos^2 x)\\ \frac{\partial F}{\partial y}=\sin2x\\ \frac{\partial Q}{\partial x}=-2\cos x(-\sin x)=\sin 2x

Then \exist function u(x,y)u(x,y) :

ux=P=ysin2xuy=Q=(1+y2+cos2x)u(x,y)=ysin2xdx=12ycos2x+ψ(y)uy=12cos2x+ψ(y)==12(2cos2x1)+ψ(y)==cos2x+0.5+ψ(y)cos2x+0.5+ψ(y)=1y2cos2xψ(y)=1.5y2ψ(y)=1.5yy33\frac{\partial u}{\partial x}=P=y\sin 2x\\ \frac{\partial u}{\partial y}=Q=-(1+y^2+\cos^2 x)\\ u(x,y)=\int y\sin2xdx=-\frac{1}{2}y\cos2x+\psi(y)\\ \frac{\partial u}{\partial y}=-\frac{1}{2}\cos2x+\psi'(y)=\\ =-\frac{1}{2}(2\cos^2x-1)+\psi'(y)=\\ =-\cos^2x+0.5+\psi'(y)\\ -\cos^2x+0.5+\psi'(y)=-1-y^2-\cos^2x\\ \psi'(y)=-1.5-y^2\\ \psi(y)=-1.5y-\frac{y^3}{3}

Then

u(x,y)=0.5ycos2x1.5yy33u(x,y)=-0.5y\cos2x-1.5y-\frac{y^3}{3}

solution of equation is

0.5ycos2x1.5yy33=c-0.5y\cos2x-1.5y-\frac{y^3}{3}=c



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS