Question #121364

y(2xy+1)dx-xdy=0


1
Expert's answer
2020-06-10T19:59:18-0400

y(2xy+1)dxxdy=0y(2xy+1)xdydx=0y1xy=2y2y(2xy+1)dx-xdy=0\\ y(2xy+1)-x\frac{dy}{dx}=0\\ y'-\frac{1}{x}y = 2y^2

it is Bernoulli equation

v=y1vvx=2v+vx=0dvv=dxxln(v)=ln(x)+Cv(x)=Cxv=y^{-1}\\ -v'-\frac{v}{x}=2\\ v'+\frac{v}{x} = 0\\ \frac{dv}{v} = -\frac{dx}{x}\\ \ln(v) = -\ln(x)+C\\ v(x) = \frac{C}{x}

general solution is:

v(x)=x+cxy(x)=v1(x)=xCx2v(x) = -x+\frac{c}{x}\\ y(x) = v^{-1}(x) = \frac{x}{C-x^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS