y(2xy+1)dx-xdy=0
y(2xy+1)dx−xdy=0y(2xy+1)−xdydx=0y′−1xy=2y2y(2xy+1)dx-xdy=0\\ y(2xy+1)-x\frac{dy}{dx}=0\\ y'-\frac{1}{x}y = 2y^2y(2xy+1)dx−xdy=0y(2xy+1)−xdxdy=0y′−x1y=2y2
it is Bernoulli equation
v=y−1−v′−vx=2v′+vx=0dvv=−dxxln(v)=−ln(x)+Cv(x)=Cxv=y^{-1}\\ -v'-\frac{v}{x}=2\\ v'+\frac{v}{x} = 0\\ \frac{dv}{v} = -\frac{dx}{x}\\ \ln(v) = -\ln(x)+C\\ v(x) = \frac{C}{x}v=y−1−v′−xv=2v′+xv=0vdv=−xdxln(v)=−ln(x)+Cv(x)=xC
general solution is:
v(x)=−x+cxy(x)=v−1(x)=xC−x2v(x) = -x+\frac{c}{x}\\ y(x) = v^{-1}(x) = \frac{x}{C-x^2}v(x)=−x+xcy(x)=v−1(x)=C−x2x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments