a)
"m\\frac {dv}{dt}=mg-bv"
where b is air resistance
Let:
"k=b\/m"
then:
"dv\/dt+kv=g"
First, solve:
"dv\/dt+kv=0"
"dv\/dt=-kv"
"dv\/v=-kdt"
"v=Ce^{-kt}"
Then:
"\\frac {d}{dt}C(t)=ge^{kt}"
"v(t)=e^{-kt}(v(0)-g\/k)+g\/k"
Since "v(0)=0" :
"v(t)=\\frac {mg}{b}(1-e^{-bt\/m})"
Answer:
"v(10)=v(10)=v(10)= \\frac {174\\cdot32}{0.76}(1-e^{-0.76\\cdot10\/174})=313.11" ft/s
b)
"v(t)=dx\/dt"
"x(t)=\\int v(t)dt=\\frac {mg}{b}(t+\\frac {m}{b}e^{-bt\/m})+C"
"x(0)=0=\\frac {m^2g}{b^2}+C"
"C=-\\frac {m^2g}{b^2}"
"x(t)=\\frac {mg}{b}(t+\\frac {m}{b}e^{-bt\/m})-\\frac {m^2g}{b^2}"
Answer:
"x(10)=\\frac {174\\cdot32}{0.76}(10+\\frac {174}{0.76}e^{-0.76\\cdot10\/174})-\\frac {174^2\\cdot32}{0.76^2}=1576.96" ft
c)
"v(t\\to\\infin)=mg\/b=174\\cdot32\/12=464" ft/s
Comments
Leave a comment