a)
mdtdv=mg−bv
where b is air resistance
Let:
k=b/m
then:
dv/dt+kv=g
First, solve:
dv/dt+kv=0
dv/dt=−kv
dv/v=−kdt
v=Ce−kt
Then:
dtdC(t)=gekt
v(t)=e−kt(v(0)−g/k)+g/k
Since v(0)=0 :
v(t)=bmg(1−e−bt/m)
Answer:
v(10)=v(10)=v(10)=0.76174⋅32(1−e−0.76⋅10/174)=313.11 ft/s
b)
v(t)=dx/dt
x(t)=∫v(t)dt=bmg(t+bme−bt/m)+C
x(0)=0=b2m2g+C
C=−b2m2g
x(t)=bmg(t+bme−bt/m)−b2m2g
Answer:
x(10)=0.76174⋅32(10+0.76174e−0.76⋅10/174)−0.7621742⋅32=1576.96 ft
c)
v(t→∞)=mg/b=174⋅32/12=464 ft/s
Comments