dtdS=1000(10r)ert/100=100rert/100
a)
∫ dS = ∫ 100rert/100dt
=> S(t) = 100r ∫ert/100dt , r is constant
=> S(t) = 100r (ert/100 )(r100 )+C
=> S(t) = 10000ert/100+C
When t =0 , S = 10000
So 10000 = 10000 + C
=> C=0
So S(t) = 10000 ert/100
Investment at time t is,
S(t) = 10000ert/100
b)
S'(t) = 10000 ert/100 (100r)
=> S'(t) = 1000(10r)ert/100
[ Verified ]
c) S(t) is continuous for t≥0 as S(t) is
an exponential function and exponential function is continuous function everywhere.
d) limt→∞S(t)
=limt→∞10000ert/100
= ∞ [as e> 1]
INTERPRETATION:
Investment grows without bound as time grows unboundedly.
e)
15000 = 10000 ert/100
=> ert/100 = 15000/10000 = 1.5
So rt/100 = ln(1.5)
=> t = r100ln(1.5)
It will take r100ln(1.5) years to be 15000
Comments