"\\frac {dS} {dt} = 1000(\\frac {r} {10} )e^{rt\/100} \n= 100re^{rt\/100}"
a)
"\\int" dS = "\\int" "100re^{rt\/100} dt"
=> S(t) = 100r "\\int e^{rt\/100}dt" , r is constant
=> S(t) = 100r ("e^{rt\/100}" )("\\frac {100}{r}" )+C
=> S(t) = 10000"e^{rt\/100} + C"
When t =0 , S = 10000
So 10000 = 10000 + "C"
=> "C = 0"
So S(t) = 10000 "e^{rt\/100}"
Investment at time t is,
S(t) = 10000"e^{rt\/100}"
b)
S'(t) = 10000 "e^{rt\/100}" ("\\frac {r}{100})"
=> S'(t) = "1000(\\frac {r} {10} )e^{rt\/100}"
[ Verified ]
c) S(t) is continuous for t≥0 as S(t) is
an exponential function and exponential function is continuous function everywhere.
d) "\\lim_{t\u2192\u221e} S(t)"
"= \\lim_{t\u2192\u221e} 10000e^{rt\/100}"
= ∞ [as e> 1]
INTERPRETATION:
Investment grows without bound as time grows unboundedly.
e)
15000 = 10000 "e^{rt\/100}"
=> "e^{rt\/100}" = 15000/10000 = 1.5
So rt/100 = ln(1.5)
=> t = "\\frac {100}{r} ln(1.5)"
It will take "\\frac {100}{r} ln(1.5)" years to be 15000
Comments
Leave a comment