Question #120663
Solve the following differential equation by changing the independent variable:
x.d^2y/dx^2+(4x^2-1)dy/dx+4x^3=2x^3
1
Expert's answer
2020-06-08T19:41:55-0400
xd2ydx2+(4x21)dydx+4x3y=2x3x{d^2y\over dx^2}+(4x^2-1){dy\over dx}+4x^3y=2x^3d2ydx2+(4x1x)dydx+4x2y=2x2,x0{d^2y\over dx^2}+(4x-{1\over x}){dy\over dx}+4x^2y=2x^2,x\not=0

Here

P=4x1x,P=4x-\dfrac{1}{x},

Q=4x2Q=4x^2

R=2x2R=2x^2

Changing the independent variable from xx to zz


d2ydz2+P1dydz+Q1y=R1{d^2y\over dz^2}+P_1{dy\over dz}+Q_1y=R_1

where


P1=d2zdx2+Pdzdx(dzdx)2P_1=\dfrac{{d^2z\over dx^2}+P{dz\over dx}}{({dz\over dx})^2}

Q1=Q(dzdx)2Q_1=\dfrac{Q}{({dz\over dx})^2}

R1=R(dzdx)2R_1=\dfrac{R}{({dz\over dx})^2}

We choose zz such that


Q1=Q(dzdx)2=constantQ_1=\dfrac{Q}{({dz\over dx})^2}=constant

Let


Q1=4x2(dzdx)2=1Q_1=\dfrac{4x^2}{({dz\over dx})^2}=1

Then


dzdx=2x{dz\over dx}=2x

Integrating

z=x2z=x^2

We have


d2zdx2=2{d^2z\over dx^2}=2

P1=d2zdx2+Pdzdx(dzdx)2=2+(4x1x)(2x)(2x)2=2P_1=\dfrac{{d^2z\over dx^2}+P{dz\over dx}}{({dz\over dx})^2}=\dfrac{2+(4x-\dfrac{1}{x})(2x)}{(2x)^2}=2

R1=R(dzdx)2=2x2(2x)2=12R_1=\dfrac{R}{({dz\over dx})^2}=\dfrac{2x^2}{(2x)^2}={1\over 2}

d2ydz2+2dydz+y=12{d^2y\over dz^2}+2{dy\over dz}+y={1\over 2}

Method of undetermined coefficients

Homogeneous second order differentional equation


d2ydz2+2dydz+y=0{d^2y\over dz^2}+2{dy\over dz}+y=0

Characteristic equation


λ2+2λ+1=0\lambda^2+2\lambda+1=0λ1=λ2=1\lambda_1=\lambda_2=-1

The general solution of the homogeneous differential equation is


y0=C1zez+C2ezy_0=C_1ze^{-z}+C_2e^{-z}

Let Y=A,Y=A, then


dYdz=0,d2Ydz2=0{dY\over dz}=0, {d^2Y\over dz^2}=0

Y=12Y={1\over 2}

The general solution of the nonhomogeneous equation


y(z)=y0+Yy(z)=y_0+Y

y(z)=C1zez+C2ez+12y(z)=C_1ze^{-z}+C_2e^{-z}+{1\over 2}

Substitute z=x2z=x^2 and obtain the general solution


y(z)=C1x2ex2+C2ex2+12y(z)=C_1x^2e^{-x^2}+C_2e^{-x^2}+{1\over 2}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS