xdx2d2y+(4x2−1)dxdy+4x3y=2x3dx2d2y+(4x−x1)dxdy+4x2y=2x2,x=0 Here
P=4x−x1,
Q=4x2
R=2x2
Changing the independent variable from x to z
dz2d2y+P1dzdy+Q1y=R1 where
P1=(dxdz)2dx2d2z+Pdxdz
Q1=(dxdz)2Q
R1=(dxdz)2R We choose z such that
Q1=(dxdz)2Q=constant Let
Q1=(dxdz)24x2=1 Then
dxdz=2x Integrating
z=x2 We have
dx2d2z=2
P1=(dxdz)2dx2d2z+Pdxdz=(2x)22+(4x−x1)(2x)=2
R1=(dxdz)2R=(2x)22x2=21
dz2d2y+2dzdy+y=21 Method of undetermined coefficients
Homogeneous second order differentional equation
dz2d2y+2dzdy+y=0 Characteristic equation
λ2+2λ+1=0λ1=λ2=−1 The general solution of the homogeneous differential equation is
y0=C1ze−z+C2e−z Let Y=A, then
dzdY=0,dz2d2Y=0
Y=21 The general solution of the nonhomogeneous equation
y(z)=y0+Y
y(z)=C1ze−z+C2e−z+21 Substitute z=x2 and obtain the general solution
y(z)=C1x2e−x2+C2e−x2+21
Comments