By the condition of the problem, this equation
"\\frac{dn}{dt}=a\\left(L-n(t)\\right)"
should be a mathematical model to describe population changes.
Therefore, we can immediately give physical meaning to some variables and constants
"t-\\text{time}\\\\[0.3cm]\nt_0-\\text{initial time}\\\\[0.3cm]\nn(t)-\\text{population at time}\\,\\,\\,t\\\\[0.3cm]\nn_0-\\text{initial population}\\\\[0.3cm]"
For further analysis of the model and interpretation of constants, we solve this differential equation:
"\\displaystyle\\frac{dn}{dt}=a\\left(L-n(t)\\right)\\rightarrow\\displaystyle\\frac{dn}{L-n(t)}=adt\\\\[0.3cm]\n\\int\\displaystyle\\frac{dn}{L-n(t)}=\\int adt\\rightarrow-\\ln|L-n(t)|=at-\\ln|C|\\\\[0.3cm]\n\\ln|L-n(t)|=-at+\\ln|C|\\rightarrow L-n(t)=C\\cdot e^{-at}\\\\[0.3cm]\n\\boxed{n(t)=L-C\\cdot e^{-at}}"
To determine the constant, we use the initial condition
"n(t_0)=n_0=L-C\\cdot e^{-at_0}\\rightarrow C\\cdot e^{-at_0}=L-n_0\\\\[0.3cm]\n\\boxed{C=e^{at_0}\\cdot(L-n_0)}"
Conclusion,
"n(t)=L-e^{at_0}\\cdot(L-n_0)\\cdot e^{-at}\\rightarrow\\\\[0.3cm]\n\\boxed{n(t)=n_0\\cdot e^{-a(t-t_0)}+L\\cdot\\left(1-e^{-a(t-t_0)}\\right)}\\\\[0.3cm]\n\\lim\\limits_{n\\to\\infty}n(t)=\\lim\\limits_{n\\to\\infty}\\left(n_0\\cdot e^{-a(t-t_0)}+L\\cdot\\left(1-e^{-a(t-t_0)}\\right)\\right)=L"
Now we can explain the physical meaning of constants "a" and "L" :
"L-\\text{maximum possible population}\\\\[0.3cm]\na-\\text{characteristic time at which the difference decreases e times}\\\\[0.3cm]"
ANSWER
"n(t)=n_0\\cdot e^{-a(t-t_0)}+L\\cdot\\left(1-e^{-a(t-t_0)}\\right)\\\\[0.3cm]\nt-\\text{time}\\\\[0.3cm]\nt_0-\\text{initial time}\\\\[0.3cm]\nn(t)-\\text{population at time}\\,\\,\\,t\\\\[0.3cm]\nn_0-\\text{initial population}\\\\[0.3cm]\nL-\\text{maximum possible population}\\\\[0.3cm]\na-\\text{characteristic time at which the difference decreases e times}"
Comments
Leave a comment