1 STEP: Solve the differential equation
d x d t = x 100 − x 2 1 0 8 ⟶ d x ( x 100 − x 2 1 0 8 ) = d t ⟶ 1 0 8 d x x ( 1 0 6 − x ) = d t ⟶ 1 0 8 ⋅ ∫ 1 1 0 6 ⋅ ( 1 0 6 − x ) + x x ( 1 0 6 − x ) d x = ∫ d t ⟶ 1 0 2 ⋅ ∫ ( 1 x + 1 1 0 6 − x ) d x = t ⟶ ln ∣ x ∣ − ln ∣ 1 0 6 − x ∣ = t 100 + ln ∣ C ∣ ⟶ ln ∣ x 1 0 6 − x ∣ = t 100 + ln ∣ C ∣ ⟶ x 1 0 6 − x = C ⋅ e t / 100 ⟶ x = 1 0 6 ⋅ C ⋅ e t / 100 − x ⋅ C ⋅ e t / 100 ⟶ x ⋅ ( 1 + C ⋅ e t / 100 ) = 1 0 6 ⋅ C ⋅ e t / 100 ⟶ x ( t ) = 1 0 6 ⋅ C ⋅ e t / 100 1 + C ⋅ e t / 100 ⟶ x ( t ) = 1 0 6 1 + 1 C ⋅ e − t / 100 \frac{dx}{dt}=\frac{x}{100}-\frac{x^2}{10^8}\longrightarrow\\[0.3cm]
\frac{dx}{\displaystyle\left(\frac{x}{100}-\frac{x^2}{10^8}\right)}=dt\longrightarrow\frac{10^8dx}{x(10^6-x)}=dt\longrightarrow\\[0.3cm]
10^8\cdot\int\frac{1}{10^6}\cdot\frac{(10^6-x)+x}{x(10^6-x)}dx=\int dt\longrightarrow\\[0.3cm]
10^2\cdot\int\left(\frac{1}{x}+\frac{1}{10^6-x}\right)dx=t\longrightarrow\\[0.3cm]
\ln|x|-\ln|10^6-x|=\frac{t}{100}+\ln|C|\longrightarrow\\[0.3cm]
\ln\left|\frac{x}{10^6-x}\right|=\frac{t}{100}+\ln|C|\longrightarrow\\[0.3cm]
\frac{x}{10^6-x}=C\cdot e^{t/100}\longrightarrow\\[0.3cm]
x=10^6\cdot C\cdot e^{t/100}-x\cdot C\cdot e^{t/100}\longrightarrow\\[0.3cm]
x\cdot\left(1+C\cdot e^{t/100}\right)=10^6\cdot C\cdot e^{t/100}\longrightarrow\\[0.3cm]
x(t)=\frac{10^6\cdot C\cdot e^{t/100}}{1+C\cdot e^{t/100}}\longrightarrow\\[0.3cm]
\boxed{x(t)=\frac{10^6}{1+\frac{1}{C}\cdot e^{-t/100}}} d t d x = 100 x − 1 0 8 x 2 ⟶ ( 100 x − 1 0 8 x 2 ) d x = d t ⟶ x ( 1 0 6 − x ) 1 0 8 d x = d t ⟶ 1 0 8 ⋅ ∫ 1 0 6 1 ⋅ x ( 1 0 6 − x ) ( 1 0 6 − x ) + x d x = ∫ d t ⟶ 1 0 2 ⋅ ∫ ( x 1 + 1 0 6 − x 1 ) d x = t ⟶ ln ∣ x ∣ − ln ∣1 0 6 − x ∣ = 100 t + ln ∣ C ∣ ⟶ ln ∣ ∣ 1 0 6 − x x ∣ ∣ = 100 t + ln ∣ C ∣ ⟶ 1 0 6 − x x = C ⋅ e t /100 ⟶ x = 1 0 6 ⋅ C ⋅ e t /100 − x ⋅ C ⋅ e t /100 ⟶ x ⋅ ( 1 + C ⋅ e t /100 ) = 1 0 6 ⋅ C ⋅ e t /100 ⟶ x ( t ) = 1 + C ⋅ e t /100 1 0 6 ⋅ C ⋅ e t /100 ⟶ x ( t ) = 1 + C 1 ⋅ e − t /100 1 0 6
2 STEP: To determine the constant, we use the initial condition
x ( 1980 ) = 100000 ≡ 1 0 5 = 1 0 6 1 + 1 C ⋅ e − 1980 / 100 ⟶ 1 + 1 C ⋅ e − 1980 / 100 = 10 ⟶ 1 C ⋅ e − 1980 / 100 = 9 ⟶ 1 C = 9 ⋅ e 1980 / 100 x(1980)=100000\equiv 10^5=\frac{10^6}{1+\frac{1}{C}\cdot e^{-1980/100}}\longrightarrow\\[0.3cm]
1+\frac{1}{C}\cdot e^{-1980/100}=10\longrightarrow\frac{1}{C}\cdot e^{-1980/100}=9\longrightarrow\\[0.3cm]
\boxed{\frac{1}{C}=9\cdot e^{1980/100}} x ( 1980 ) = 100000 ≡ 1 0 5 = 1 + C 1 ⋅ e − 1980/100 1 0 6 ⟶ 1 + C 1 ⋅ e − 1980/100 = 10 ⟶ C 1 ⋅ e − 1980/100 = 9 ⟶ C 1 = 9 ⋅ e 1980/100
Conclusion,
x ( t ) = 1 0 6 1 + 9 ⋅ e 1980 / 100 ⋅ e − t / 100 ⟶ x ( t ) = 1 0 6 1 + 9 ⋅ e ( 1980 − t ) / 100 − the population at any time t > 1980 x(t)=\frac{10^6}{1+9\cdot e^{1980/100}\cdot e^{-t/100}}\longrightarrow\\[0.3cm]
\boxed{x(t)=\frac{10^6}{1+9\cdot e^{(1980-t)/100}}-\text{the population at any time}\,\,t>1980 } x ( t ) = 1 + 9 ⋅ e 1980/100 ⋅ e − t /100 1 0 6 ⟶ x ( t ) = 1 + 9 ⋅ e ( 1980 − t ) /100 1 0 6 − the population at any time t > 1980
3 STEP: We use the given formula to calculate the population in 2000
x ( 2000 ) = 1 0 6 1 + 9 ⋅ e ( 1980 − 2000 ) / 100 = 1 0 6 1 + 9 ⋅ e − 0.2 ⟶ x ( 2000 ) ≈ 119494.63 − the population in 2000 x(2000)=\frac{10^6}{1+9\cdot e^{(1980-2000)/100}}=\frac{10^6}{1+9\cdot e^{-0.2}}\longrightarrow\\[0.3cm]
\boxed{x(2000)\approx 119494.63-\text{the population in 2000}} x ( 2000 ) = 1 + 9 ⋅ e ( 1980 − 2000 ) /100 1 0 6 = 1 + 9 ⋅ e − 0.2 1 0 6 ⟶ x ( 2000 ) ≈ 119494.63 − the population in 2000
ANSWER
x ( t ) = 1 0 6 1 + 9 ⋅ e ( 1980 − t ) / 100 − the population at any time t > 1980 x ( 2000 ) ≈ 119494.63 − the population in 2000 x(t)=\frac{10^6}{1+9\cdot e^{(1980-t)/100}}-\text{the population at any time}\,\,t>1980\\[0.3cm]
x(2000)\approx 119494.63-\text{the population in 2000} x ( t ) = 1 + 9 ⋅ e ( 1980 − t ) /100 1 0 6 − the population at any time t > 1980 x ( 2000 ) ≈ 119494.63 − the population in 2000
Comments