1 STEP: Solve the differential equation
"\\frac{dx}{dt}=\\frac{x}{100}-\\frac{x^2}{10^8}\\longrightarrow\\\\[0.3cm]\n\\frac{dx}{\\displaystyle\\left(\\frac{x}{100}-\\frac{x^2}{10^8}\\right)}=dt\\longrightarrow\\frac{10^8dx}{x(10^6-x)}=dt\\longrightarrow\\\\[0.3cm]\n10^8\\cdot\\int\\frac{1}{10^6}\\cdot\\frac{(10^6-x)+x}{x(10^6-x)}dx=\\int dt\\longrightarrow\\\\[0.3cm]\n10^2\\cdot\\int\\left(\\frac{1}{x}+\\frac{1}{10^6-x}\\right)dx=t\\longrightarrow\\\\[0.3cm]\n\\ln|x|-\\ln|10^6-x|=\\frac{t}{100}+\\ln|C|\\longrightarrow\\\\[0.3cm]\n\\ln\\left|\\frac{x}{10^6-x}\\right|=\\frac{t}{100}+\\ln|C|\\longrightarrow\\\\[0.3cm]\n\\frac{x}{10^6-x}=C\\cdot e^{t\/100}\\longrightarrow\\\\[0.3cm]\nx=10^6\\cdot C\\cdot e^{t\/100}-x\\cdot C\\cdot e^{t\/100}\\longrightarrow\\\\[0.3cm]\nx\\cdot\\left(1+C\\cdot e^{t\/100}\\right)=10^6\\cdot C\\cdot e^{t\/100}\\longrightarrow\\\\[0.3cm]\nx(t)=\\frac{10^6\\cdot C\\cdot e^{t\/100}}{1+C\\cdot e^{t\/100}}\\longrightarrow\\\\[0.3cm]\n\\boxed{x(t)=\\frac{10^6}{1+\\frac{1}{C}\\cdot e^{-t\/100}}}"
2 STEP: To determine the constant, we use the initial condition
"x(1980)=100000\\equiv 10^5=\\frac{10^6}{1+\\frac{1}{C}\\cdot e^{-1980\/100}}\\longrightarrow\\\\[0.3cm]\n1+\\frac{1}{C}\\cdot e^{-1980\/100}=10\\longrightarrow\\frac{1}{C}\\cdot e^{-1980\/100}=9\\longrightarrow\\\\[0.3cm]\n\\boxed{\\frac{1}{C}=9\\cdot e^{1980\/100}}"
Conclusion,
"x(t)=\\frac{10^6}{1+9\\cdot e^{1980\/100}\\cdot e^{-t\/100}}\\longrightarrow\\\\[0.3cm]\n\\boxed{x(t)=\\frac{10^6}{1+9\\cdot e^{(1980-t)\/100}}-\\text{the population at any time}\\,\\,t>1980 }"
3 STEP: We use the given formula to calculate the population in 2000
"x(2000)=\\frac{10^6}{1+9\\cdot e^{(1980-2000)\/100}}=\\frac{10^6}{1+9\\cdot e^{-0.2}}\\longrightarrow\\\\[0.3cm]\n\\boxed{x(2000)\\approx 119494.63-\\text{the population in 2000}}"
ANSWER
"x(t)=\\frac{10^6}{1+9\\cdot e^{(1980-t)\/100}}-\\text{the population at any time}\\,\\,t>1980\\\\[0.3cm]\nx(2000)\\approx 119494.63-\\text{the population in 2000}"
Comments
Leave a comment