Question #106149
The population x(t) of a certain city satisfies the logistic law

2
8
10( )
1
100
1
x x
dt
dx
= −
where t is measured in years. Given that the population of the city is 100000 in 1980,
determine the population at any time t >1980 . Also find the population in the year 2000.
1
Expert's answer
2020-03-23T14:14:53-0400

1 STEP: Solve the differential equation



dxdt=x100x2108dx(x100x2108)=dt108dxx(106x)=dt1081106(106x)+xx(106x)dx=dt102(1x+1106x)dx=tlnxln106x=t100+lnClnx106x=t100+lnCx106x=Cet/100x=106Cet/100xCet/100x(1+Cet/100)=106Cet/100x(t)=106Cet/1001+Cet/100x(t)=1061+1Cet/100\frac{dx}{dt}=\frac{x}{100}-\frac{x^2}{10^8}\longrightarrow\\[0.3cm] \frac{dx}{\displaystyle\left(\frac{x}{100}-\frac{x^2}{10^8}\right)}=dt\longrightarrow\frac{10^8dx}{x(10^6-x)}=dt\longrightarrow\\[0.3cm] 10^8\cdot\int\frac{1}{10^6}\cdot\frac{(10^6-x)+x}{x(10^6-x)}dx=\int dt\longrightarrow\\[0.3cm] 10^2\cdot\int\left(\frac{1}{x}+\frac{1}{10^6-x}\right)dx=t\longrightarrow\\[0.3cm] \ln|x|-\ln|10^6-x|=\frac{t}{100}+\ln|C|\longrightarrow\\[0.3cm] \ln\left|\frac{x}{10^6-x}\right|=\frac{t}{100}+\ln|C|\longrightarrow\\[0.3cm] \frac{x}{10^6-x}=C\cdot e^{t/100}\longrightarrow\\[0.3cm] x=10^6\cdot C\cdot e^{t/100}-x\cdot C\cdot e^{t/100}\longrightarrow\\[0.3cm] x\cdot\left(1+C\cdot e^{t/100}\right)=10^6\cdot C\cdot e^{t/100}\longrightarrow\\[0.3cm] x(t)=\frac{10^6\cdot C\cdot e^{t/100}}{1+C\cdot e^{t/100}}\longrightarrow\\[0.3cm] \boxed{x(t)=\frac{10^6}{1+\frac{1}{C}\cdot e^{-t/100}}}

2 STEP: To determine the constant, we use the initial condition


x(1980)=100000105=1061+1Ce1980/1001+1Ce1980/100=101Ce1980/100=91C=9e1980/100x(1980)=100000\equiv 10^5=\frac{10^6}{1+\frac{1}{C}\cdot e^{-1980/100}}\longrightarrow\\[0.3cm] 1+\frac{1}{C}\cdot e^{-1980/100}=10\longrightarrow\frac{1}{C}\cdot e^{-1980/100}=9\longrightarrow\\[0.3cm] \boxed{\frac{1}{C}=9\cdot e^{1980/100}}



Conclusion,



x(t)=1061+9e1980/100et/100x(t)=1061+9e(1980t)/100the population at any timet>1980x(t)=\frac{10^6}{1+9\cdot e^{1980/100}\cdot e^{-t/100}}\longrightarrow\\[0.3cm] \boxed{x(t)=\frac{10^6}{1+9\cdot e^{(1980-t)/100}}-\text{the population at any time}\,\,t>1980 }



3 STEP: We use the given formula to calculate the population in 2000



x(2000)=1061+9e(19802000)/100=1061+9e0.2x(2000)119494.63the population in 2000x(2000)=\frac{10^6}{1+9\cdot e^{(1980-2000)/100}}=\frac{10^6}{1+9\cdot e^{-0.2}}\longrightarrow\\[0.3cm] \boxed{x(2000)\approx 119494.63-\text{the population in 2000}}



ANSWER



x(t)=1061+9e(1980t)/100the population at any timet>1980x(2000)119494.63the population in 2000x(t)=\frac{10^6}{1+9\cdot e^{(1980-t)/100}}-\text{the population at any time}\,\,t>1980\\[0.3cm] x(2000)\approx 119494.63-\text{the population in 2000}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS