Question #218196

Expand f(z)=๐‘ง+3/๐‘ง(๐‘ง2โˆ’๐‘งโˆ’2) in power of z where

a) |๐‘ง|<1

b) 1<|๐‘ง|<2

c) |๐‘ง|>2



1
Expert's answer
2021-07-22T06:00:35-0400

f=z+3z(z2โˆ’zโˆ’2)=z+3z(z+1)(zโˆ’2)=z+1z(1zโˆ’2โˆ’1z+1)=z+1z(zโˆ’2)โˆ’1z(z+1)=z+12(zโˆ’2)โˆ’12zโˆ’1z+1z+1=zโˆ’32zโˆ’1+14(z2โˆ’1)+1z+1f=z+\frac{3}{z(z^2-z-2)}=z+\frac{3}{z(z+1)(z-2)}=z+\frac{1}{z}\left(\frac{1}{z-2}-\frac{1}{z+1}\right)=z+\frac{1}{z(z-2)}-\frac{1}{z(z+1)}=z+\frac{1}{2(z-2)}-\frac{1}{2z}-\frac{1}{z}+\frac{1}{z+1}=z-\frac{3}{2}z^{-1}+\frac{1}{4(\frac{z}{2}-1)}+\frac{1}{z+1}

We remind the formula: a+ar+...+arn=a(1โˆ’rn+11โˆ’r)a+ar+...+ar^n=a\left(\frac{1-r^{n+1}}{1-r}\right), โˆฃrโˆฃ<1.|r|<1. We take the limit and get: a+ar+...+arn+...=a1โˆ’ra+ar+...+ar^n+...=\frac{a}{1-r}.

a). For โˆฃzโˆฃ<1|z|<1 we use the formula and get:

zโˆ’32zโˆ’1+14(z2โˆ’1)+1z+1=zโˆ’32zโˆ’1โˆ’14(1+z2+z222+z323...)+(1โˆ’z+z2โˆ’z3+z4+...)z-\frac{3}{2}z^{-1}+\frac{1}{4(\frac{z}{2}-1)}+\frac{1}{z+1}=z-\frac{3}{2}z^{-1}-\frac14\left(1+\frac{z}{2}+\frac{z^2}{2^2}+\frac{z^3}{2^3}...\right)+\left(1-z+z^2-z^3+z^4+...\right)

b). We point out that 12<1โˆฃzโˆฃ<1\frac{1}{2}<\frac{1}{|z|}<1. We rewrite the equality as: zโˆ’32zโˆ’1โˆ’14(1โˆ’z2)+1z(1+1z)=zโˆ’32zโˆ’1โˆ’14(1โˆ’z2+z24โˆ’...)+1z(1โˆ’1z+1z2+...)z-\frac{3}{2}z^{-1}-\frac{1}{4(1-\frac{z}2)}+\frac{1}{z(1+\frac{1}{z})}=z-\frac{3}{2}z^{-1}-\frac{1}{4}\left(1-\frac{z}{2}+\frac{z^2}4-...\right)+\frac{1}{z}\left(1-\frac{1}{z}+\frac{1}{z^2}+...\right)

c). We have: 12>1โˆฃzโˆฃ\frac{1}{2}>\frac{1}{|z|}. Thus, we get: zโˆ’32zโˆ’1+12(1โˆ’2z)+1z(1+1z)=zโˆ’32zโˆ’1+12(1โˆ’2z+4z2+...)+1z(1โˆ’1z+1z2+...)z-\frac{3}{2}z^{-1}+\frac{1}{2(1-\frac{2}{z})}+\frac{1}{z(1+\frac{1}{z})}=z-\frac{3}{2}z^{-1}+\frac12\left(1-\frac{2}{z}+\frac{4}{z^2}+...\right)+\frac{1}{z}\left(1-\frac{1}{z}+\frac{1}{z^2}+...\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS