f(x)={x2−34x+2if x≥5,if x<5.
The function is a continuous at a given point x=a when f(a) exists and limx→af(x)=f(a).
f(5)=52−3=25−3=22.
limx→5−f(x)=limx→5−(4x+2)=4⋅5+2=22,
limx→5+f(x)=limx→5−(x2−3)=25−3=22,
so
limx→5−f(x)=limx→5+f(x)=22=f(5),
and the function is continuous at x=5.
Answer: the function is continuous at x=5.
Comments