Tell whether if the following piecewise function is a continuous at a given point or not. (SHOW THE SOLUTION).
3. at x = 5
x² - 3 if x ≥ 5
4x + 2 if x < 5
"f(x)=\\{\\begin{matrix}\n x^2-3 & \\text{if }x\\geq 5, \\\\\n 4x+2 & \\text{if }x< 5.\n\\end{matrix}"
The function is a continuous at a given point x=a when f(a) exists and "lim_{x \\to a}f(x)=f(a)."
"f(5)=5^2-3=25-3=22."
"lim_{x\\to 5^-}f(x)=lim_{x\\to 5^-}(4x+2)=4\\cdot 5+2=22,"
"lim_{x\\to 5^+}f(x)=lim_{x\\to 5^-}(x^2-3)=25-3=22,"
so
"lim_{x\\to 5^-}f(x)=lim_{x\\to 5^+}f(x)=22=f(5),"
and the function is continuous at x=5.
Answer: the function is continuous at x=5.
Comments
Leave a comment