Question #348840

Tell whether if the following piecewise function is a continuous at a given point or not. (SHOW THE SOLUTION).



1. at x = 4



x + 1 if x < 4


(x - 4)² + 3 if x ≥ 4



2. at x = 0



1/x if x ≤ -1


x² - 2 if x > -1



3. at x = 5



x² - 3 if x ≥ 5


4x + 2 if x < 5




1
Expert's answer
2022-06-08T13:27:10-0400

1.


limx4f(x)=limx4(x+1)=4+1=5\lim\limits_{x\to4^-}f(x)=\lim\limits_{x\to4^-}(x+1)=4+1=5

limx4+f(x)=limx4+((x4)2+3)=(44)2+3=3\lim\limits_{x\to4^+}f(x)=\lim\limits_{x\to4^+}((x-4)^2+3)=(4-4)^2+3=3

limx4f(x)=53=limx4+f(x)\lim\limits_{x\to4^-}f(x)=5\not=3=\lim\limits_{x\to4^+}f(x)

limx4f(x)=does not exist\lim\limits_{x\to4}f(x)=\text{does not exist}

The function f(x)f(x) is not continuous at x=4.x=4.

The function f(x)f(x) has a jump discontinuity at x=4.x=4.


2.


limx0f(x)=limx0(x21)=(0)21=1=f(0)\lim\limits_{x\to0}f(x)=\lim\limits_{x\to0}(x^2-1)=(0)^2-1=-1=f(0)

The function f(x)f(x) is continuous at x=0.x=0.


3.


limx5f(x)=limx5(4x+2)=4(5)+12=22\lim\limits_{x\to5^-}f(x)=\lim\limits_{x\to5^-}(4x+2)=4(5)+12=22

limx5+f(x)=limx5+(x23)=(5)23=22\lim\limits_{x\to5^+}f(x)=\lim\limits_{x\to5^+}(x^2-3)=(5)^2-3=22

limx5f(x)=22=limx5+f(x)=>limx5f(x)=22\lim\limits_{x\to5^-}f(x)=22=\lim\limits_{x\to5^+}f(x)=>\lim\limits_{x\to5}f(x)=22

f(5)=(5)23=22=limx5f(x)f(5)=(5)^2-3=22=\lim\limits_{x\to5}f(x)

The function f(x)f(x) is continuous at x=5.x=5.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS