1.
x→4−limf(x)=x→4−lim(x+1)=4+1=5
x→4+limf(x)=x→4+lim((x−4)2+3)=(4−4)2+3=3
x→4−limf(x)=5=3=x→4+limf(x)
x→4limf(x)=does not exist The function f(x) is not continuous at x=4.
The function f(x) has a jump discontinuity at x=4.
2.
x→0limf(x)=x→0lim(x2−1)=(0)2−1=−1=f(0) The function f(x) is continuous at x=0.
3.
x→5−limf(x)=x→5−lim(4x+2)=4(5)+12=22
x→5+limf(x)=x→5+lim(x2−3)=(5)2−3=22
x→5−limf(x)=22=x→5+limf(x)=>x→5limf(x)=22
f(5)=(5)2−3=22=x→5limf(x) The function f(x) is continuous at x=5.
Comments