Tell whether if the following piecewise function is a continuous at a given point or not. (SHOW THE SOLUTION).
1. at x = 4
x + 1 if x < 4
(x - 4)² + 3 if x ≥ 4
2. at x = 0
1/x if x ≤ -1
x² - 2 if x > -1
3. at x = 5
x² - 3 if x ≥ 5
4x + 2 if x < 5
1.
"\\lim\\limits_{x\\to4^+}f(x)=\\lim\\limits_{x\\to4^+}((x-4)^2+3)=(4-4)^2+3=3"
"\\lim\\limits_{x\\to4^-}f(x)=5\\not=3=\\lim\\limits_{x\\to4^+}f(x)"
"\\lim\\limits_{x\\to4}f(x)=\\text{does not exist}"
The function "f(x)" is not continuous at "x=4."
The function "f(x)" has a jump discontinuity at "x=4."
2.
The function "f(x)" is continuous at "x=0."
3.
"\\lim\\limits_{x\\to5^+}f(x)=\\lim\\limits_{x\\to5^+}(x^2-3)=(5)^2-3=22"
"\\lim\\limits_{x\\to5^-}f(x)=22=\\lim\\limits_{x\\to5^+}f(x)=>\\lim\\limits_{x\\to5}f(x)=22"
"f(5)=(5)^2-3=22=\\lim\\limits_{x\\to5}f(x)"
The function "f(x)" is continuous at "x=5."
Comments
Leave a comment