Question #348611

You are working as a Junior Engineer for a small motor racing team. You have been given a proposed mathematical model to calculate the velocity of a car accelerating from rest in a straight line. The equation is: 𝑣(𝑡) = 𝐴 (1 − 𝑒 − 𝑡 𝑡𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑)


Ascari A10 5.0 V8 - [2006] t=2.8 tm(400)= 10.36 tmaxspeed= 7.8


derive an equation a(t) for the instantaneous position of the car as a function of time? Identify the acceleration of the car at t = 0s and asymptote of this function as t → ∞?


1
Expert's answer
2022-06-07T12:02:56-0400
v(t)=A(1et/tmaxspeed)v(t) = A (1-e ^ {- t/t_{maxspeed}})


Using the information that tmaxspeed=7.8 st_{maxspeed}=7.8\ s we have


v(t)=A(1et/7.8)v(t) = A (1-e ^ {- t/7.8})

Using the information that t(028m/s)t (0-28 m/s) is 2.8 s2.8\ s we have



v(2.8)=A(1e2.8/7.8)=28v(2.8) = A (1-e ^ {- 2.8/7.8})=28A=281e2.8/7.8m/sA=\dfrac{28}{1-e ^ {- 2.8/7.8}}m/sA=92.836 m/sA=92.836\ m/s




vmax=v(tmaxspeed)=A(1etmaxspeed/tmaxspeed)v_{max}=v(t_{maxspeed})=A (1-e ^ {- t_{maxspeed}/t_{maxspeed}})vmax=A(1e1)v_{max}=A(1-e^{-1})vmax=92.836 m/s(1e1)v_{max}=92.836\ m/s\cdot(1-e^{-1})vmax=58.673 m/sv_{max}=58.673\ m/s




a(t)=dvdt=Atmaxspeed(et/tmaxspeed)a(t)=\dfrac{dv}{dt}=\dfrac{A}{t_{maxspeed}} (e ^ {- t/t_{maxspeed}})=92.836 m/s7.8 s(et/7.8), 0 st7.8 s=\dfrac{92.836\ m/s}{7.8\ s} (e ^ {- t/7.8}), \ 0\ s\le t\le7.8\ s

The function a(t)a(t) decreases for 0 st7.8 s.0\ s\le t\le7.8\ s.



amax=a(0)=92.836 m/s7.8 sa_{max}=a(0)=\dfrac{92.836\ m/s}{7.8\ s}




amax=11.902 m/s2a_{max}=11.902\ m/s^2



If t,a0 m/s2t\to\infin,a\to0\ m/s^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS