ANSWER The centroid is ( 8 3 , 0 , 0 ) (\frac{8}{3},0,0) ( 3 8  , 0 , 0 ) 
EXPLANATION
If x 0 x_{0} x 0  { ( x 0 , y , 0 ) : 0 ≤ y ≤ 2 x 0 } \left \{\left ( x_{0},y,0 \right ) :0\leq y\leq 2\sqrt{x_{0}}  \right \} { ( x 0  , y , 0 ) : 0 ≤ y ≤ 2 x 0   } y 2 + z 2 = 4 x 0 y^{2}+z^{2}=4x_{0} y 2 + z 2 = 4 x 0  
                                       R = { ( x , y , z ) : 0 ≤ x ≤ 4 ,   0 ≤ y 2 + z 2 ≤ 4 x } R=\left \{ \left ( x,y,z \right ): 0\leq x\leq 4,\, 0\leq y^{2} +z^{2}\leq 4x\right \} R = { ( x , y , z ) : 0 ≤ x ≤ 4 , 0 ≤ y 2 + z 2 ≤ 4 x } 
The centroid ( x C , y C , z C ) (x_{C},y_{C},z_{C}) ( x C  , y C  , z C  ) 
                           x C = ∭ R x d V ∭ R d V ,     y C = ∭ R y d V ∭ R d V ,     z C = ∭ R z d V ∭ R d V x_{C}=\frac{\iiint_{R}xdV} {\iiint_{R}dV} ,\, \,y_{C}=\frac{\iiint_{R}ydV} {\iiint_{R}dV} ,\, \,z_{C}=\frac{\iiint_{R}zdV} {\iiint_{R}dV} x C  = ∭ R  d V ∭ R  x d V  , y C  = ∭ R  d V ∭ R  y d V  , z C  = ∭ R  d V ∭ R  z d V  
                                              ∭ R d V = ∫ 0 4 d x ∬ S x d y d z \iiint_{R}dV=\int_{0}^{4}dx\iint_{S_{x}} dydz ∭ R  d V = ∫ 0 4  d x ∬ S x   d y d z 
where S x S_{x} S x  4 x 4x 4 x 
                                        S x = { ( y , z ) : y 2 + z 2 ≤ 4 x } S_{x }= \left \{ \left ( y,z \right ) :y^{2}+z^{2}\leq 4x\right \} S x  = { ( y , z ) : y 2 + z 2 ≤ 4 x } 
A r e a     o f     S x = ∬ S x d y d z = 4 π ⋅ x Area \, \, of\, \, S_{x}=\iint_{S_{x}} dydz=4\pi\cdot x A re a o f S x  = ∬ S x   d y d z = 4 π ⋅ x 
  so ∭ R d V = 4 π ∫ 0 4 x d x = 4 π [ x 2 2 ] 0 4 = 2 π ( 16 − 0 ) = 32 π \iiint_{R}dV=4\pi\int_{0}^{4}xdx=4\pi\left [ \frac{x^{2}}{2} \right ]_{0}^{4}=2\pi\left (16-0  \right )=32\pi ∭ R  d V = 4 π ∫ 0 4  x d x = 4 π [ 2 x 2  ] 0 4  = 2 π ( 16 − 0 ) = 32 π 
∭ R x d V = ∫ 0 4 x d x ∬ S x d y d z = 4 π ∫ 0 4 x 2 = 4 π [ x 3 3 ] 0 4 = 256 π 3 ⇒ x C = 8 3 ≅ 2.6667 \iiint_{R}xdV=\int_{0}^{4}xdx\iint_{S_{x}} dydz=4\pi\int_{0}^{4} x ^{2}=4\pi\left [ \frac{x^{3}}{3} \right ]_{0}^{4}=\frac{256\pi}{3} \Rightarrow x_{C}=\frac{8}{3} \cong 2.6667 ∭ R  x d V = ∫ 0 4  x d x ∬ S x   d y d z = 4 π ∫ 0 4  x 2 = 4 π [ 3 x 3  ] 0 4  = 3 256 π  ⇒ x C  = 3 8  ≅ 2.6667 
 
Now, to calculate integrals over the region S x S_{x} S x  y = r cos  t , z = r sin  t y=r\cos t, z=r\sin t y = r cos t , z = r sin t ( 0 ≤ t ≤ 2 π , 0 ≤ r ≤ 2 x ) (0\leq t\leq 2\pi, 0\leq r\leq 2\sqrt{x}) ( 0 ≤ t ≤ 2 π , 0 ≤ r ≤ 2 x  ) 
∭ R y d V = ∫ 0 4 d x ∬ S x y d y d z = ∫ 0 4 [ ∫ 0 2 π ∫ 0 2 x r 2 cos  t d r d t ] d x = = ( ∫ 0 2 π cos  t d t ) ( ∫ 0 4 ∫ 0 2 x r 2 d r d x ) = 0 , \iiint_{R}ydV=\int_{0}^{4} dx\iint_{S_{x}}y dydz= \int_{0}^{4} \left [ \int_{0}^{2\pi} \int_{0}^{2\sqrt{x}}r^{2}\cos tdrdt\right ]dx=\\=\left ( \int_{0}^{2\pi}\cos tdt \right )\left ( \int_{0}^{4}\int_{0}^{2\sqrt{x}}r^{2}drdx \right )=0 , ∭ R  y d V = ∫ 0 4  d x ∬ S x   y d y d z = ∫ 0 4  [ ∫ 0 2 π  ∫ 0 2 x   r 2 cos t d r d t ] d x = = ( ∫ 0 2 π  cos t d t ) ( ∫ 0 4  ∫ 0 2 x   r 2 d r d x ) = 0 , 
because ∫ 0 2 π cos  t d t = 0. \int_{0}^{2\pi}\cos tdt =0. ∫ 0 2 π  cos t d t = 0. 
 ∭ R z d V = ∫ 0 4 d x ∬ S x z d y d z = ∫ 0 4 [ ∫ 0 2 π ∫ 0 2 x r 2 sin  t d r d t ] d x = = ( ∫ 0 2 π sin  d t ) ( ∫ 0 4 ∫ 0 2 x r 2 d r d x ) = 0 , \iiint_{R}zdV=\int_{0}^{4} dx\iint_{S_{x}}z dydz= \int_{0}^{4} \left [ \int_{0}^{2\pi} \int_{0}^{2\sqrt{x}}r^{2}\\ \sin tdrdt\right ]dx=\\=\left ( \int_{0}^{2\pi}\\ \sin dt \right )\left ( \int_{0}^{4}\int_{0}^{2\sqrt{x}}r^{2}drdx \right )=0 , ∭ R  z d V = ∫ 0 4  d x ∬ S x   z d y d z = ∫ 0 4  [ ∫ 0 2 π  ∫ 0 2 x   r 2 sin t d r d t ] d x = = ( ∫ 0 2 π  sin d t ) ( ∫ 0 4  ∫ 0 2 x   r 2 d r d x ) = 0 , 
 since    ∫ 0 2 π sin  t d t = 0 \int_{0}^{2\pi}  \sin tdt =0 ∫ 0 2 π  sin t d t = 0 y C = 0 , z C = 0 y_{C}=0, z_{C}=0 y C  = 0 , z C  = 0 
Comments