Question #348841

Tell whether if the following piecewise function is a continuous at a given point or not. (SHOW THE SOLUTION).



1. at x = 4



x + 1 if x < 4


(x - 4)² + 3 if x ≥ 4




1
Expert's answer
2022-06-08T13:38:49-0400

1.


limx4f(x)=limx4(x+1)=4+1=5\lim\limits_{x\to4^-}f(x)=\lim\limits_{x\to4^-}(x+1)=4+1=5limx4+f(x)=limx4+((x4)2+3)=(44)2+3=3\lim\limits_{x\to4^+}f(x)=\lim\limits_{x\to4^+}((x-4)^2+3)=(4-4)^2+3=3limx4f(x)=53=limx4+f(x)\lim\limits_{x\to4^-}f(x)=5\not=3=\lim\limits_{x\to4^+}f(x)limx4f(x)=does not exist\lim\limits_{x\to4}f(x)=\text{does not exist}

The function f(x)f(x) is not continuous at x=4.x=4.

The function f(x)f(x) has a jump discontinuity at x=4.x=4.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS