If g(y) = y/(1-y), show that 1/2[g(y) + g(-y)]= g(y^2).
"g(-y)=\\dfrac{-y}{1-(-y)}, y\\not=-1"
"\\dfrac{1}{2}[g(y)+g(-y)]=\\dfrac{1}{2}[\\dfrac{y}{1-y}+\\dfrac{-y}{1+y}]"
"=\\dfrac{1}{2}(\\dfrac{y+y^2-y+y^2}{1-y^2})=\\dfrac{y^2}{1-y^2}"
"=g(y^2), y\\not=\\pm1"
Therefore
Comments
Leave a comment