Evaluate ∫C (x + 2y) ds, where C is the curve defined by y = √(4 − x2), for x ∈ [0, 1].
ANSWER "\\int_{C}(x+2y) ds=" "8-2\\sqrt{3} \\cong4.5359"
EXPLANATION
To calculate the linear integral , we transform the curve "C" ( it is a circle "x^{2}+y^{2}=4" ) by parametric equation
"x(t)=2 \\cdot \\cos t, y(t)=2\\cdot \\sin t"
Changing the variable "x" from to "1" corresponds to "t\\in [\\frac {\\pi}{3},\\frac {\\pi}{2}]" .
Then the line integral is
"\\int_{C}(x+2y) ds=\\int_{\\frac{\\pi}{3}}^{\\frac{\\pi}{2}}\\left ( x(t)+2y(t) \\right )\\sqrt{\\left ( x'\\left ( t \\right ) \\right )^{2}+\\left ( y'\\left ( t \\right ) \\right )^{2}} dt"
Since "x'(t )=-2\\cdot\\sin t, y'(t)=2\\cdot \\cos t" , then "\\sqrt{\\left ( x'\\left ( t \\right ) \\right )^{2}+\\left ( y'\\left ( t \\right ) \\right )^{2}} = \\sqrt{4 ( \\sin t )^{2}+4 ( \\cos t )^{2}} =2" .
So,
"\\int_{C}(x+2y) ds=2\\int_{\\frac{\\pi}{3}}^{\\frac{\\pi}{2}}\\left (2\\cos t +4\\sin t \\right )dt=" "=2 \\left [2\\sin t-4\\cos t \\right ] _{\\frac{\\pi}{3}}^{\\frac{\\pi}{2}}=2 \\left [2\\sin \\frac{\\pi }{2}-4\\cos \\frac{\\pi }{2}- 2\\sin \\frac{\\pi }{3}+4\\cos \\frac{\\pi }{3} \\right ]=\\\\=2\\left ( 2-0-2\\cdot \\frac{\\sqrt{3}}{2} +\\frac{4}{2}\\right )=8-2\\sqrt{3} \\cong4.5359"
Comments
Leave a comment