ANSWER ∫ C ( x + 2 y ) d s = \int_{C}(x+2y) ds= ∫ C ( x + 2 y ) d s = 8 − 2 3 ≅ 4.5359 8-2\sqrt{3} \cong4.5359 8 − 2 3 ≅ 4.5359
EXPLANATION
To calculate the linear integral , we transform the curve C C C ( it is a circle x 2 + y 2 = 4 x^{2}+y^{2}=4 x 2 + y 2 = 4 ) by parametric equation
x ( t ) = 2 ⋅ cos t , y ( t ) = 2 ⋅ sin t x(t)=2 \cdot \cos t, y(t)=2\cdot \sin t x ( t ) = 2 ⋅ cos t , y ( t ) = 2 ⋅ sin t
Changing the variable x x x from to 1 1 1 corresponds to t ∈ [ π 3 , π 2 ] t\in [\frac {\pi}{3},\frac {\pi}{2}] t ∈ [ 3 π , 2 π ] .
Then the line integral is
∫ C ( x + 2 y ) d s = ∫ π 3 π 2 ( x ( t ) + 2 y ( t ) ) ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 d t \int_{C}(x+2y) ds=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\left ( x(t)+2y(t) \right )\sqrt{\left ( x'\left ( t \right ) \right )^{2}+\left ( y'\left ( t \right ) \right )^{2}} dt ∫ C ( x + 2 y ) d s = ∫ 3 π 2 π ( x ( t ) + 2 y ( t ) ) ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 d t
Since x ′ ( t ) = − 2 ⋅ sin t , y ′ ( t ) = 2 ⋅ cos t x'(t )=-2\cdot\sin t, y'(t)=2\cdot \cos t x ′ ( t ) = − 2 ⋅ sin t , y ′ ( t ) = 2 ⋅ cos t , then ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 = 4 ( sin t ) 2 + 4 ( cos t ) 2 = 2 \sqrt{\left ( x'\left ( t \right ) \right )^{2}+\left ( y'\left ( t \right ) \right )^{2}} = \sqrt{4 ( \sin t )^{2}+4 ( \cos t )^{2}} =2 ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 = 4 ( sin t ) 2 + 4 ( cos t ) 2 = 2 .
So,
∫ C ( x + 2 y ) d s = 2 ∫ π 3 π 2 ( 2 cos t + 4 sin t ) d t = \int_{C}(x+2y) ds=2\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\left (2\cos t +4\sin t \right )dt= ∫ C ( x + 2 y ) d s = 2 ∫ 3 π 2 π ( 2 cos t + 4 sin t ) d t = = 2 [ 2 sin t − 4 cos t ] π 3 π 2 = 2 [ 2 sin π 2 − 4 cos π 2 − 2 sin π 3 + 4 cos π 3 ] = = 2 ( 2 − 0 − 2 ⋅ 3 2 + 4 2 ) = 8 − 2 3 ≅ 4.5359 =2 \left [2\sin t-4\cos t \right ] _{\frac{\pi}{3}}^{\frac{\pi}{2}}=2 \left [2\sin \frac{\pi }{2}-4\cos \frac{\pi }{2}- 2\sin \frac{\pi }{3}+4\cos \frac{\pi }{3} \right ]=\\=2\left ( 2-0-2\cdot \frac{\sqrt{3}}{2} +\frac{4}{2}\right )=8-2\sqrt{3} \cong4.5359 = 2 [ 2 sin t − 4 cos t ] 3 π 2 π = 2 [ 2 sin 2 π − 4 cos 2 π − 2 sin 3 π + 4 cos 3 π ] = = 2 ( 2 − 0 − 2 ⋅ 2 3 + 2 4 ) = 8 − 2 3 ≅ 4.5359
Comments