Answer to Question #342830 in Calculus for Ddeonu

Question #342830

Problem 1: Use the tabular method to determine if the limits of the following functions exist:


a) limπ‘₯β†’3 2/(π‘₯βˆ’3)^2


b) limπ‘₯β†’3 2/(π‘₯βˆ’3)^3

1
Expert's answer
2022-05-20T08:00:03-0400

a)


lim⁑xβ†’32(xβˆ’3)2\lim\limits_{x\to 3}\dfrac{2}{(x-3)^2}xf(x)2.92002.99200002.99920000002.99992000000003.00012000000003.00120000003.01200003.1200\def\arraystretch{1.5} \begin{array}{c:c} x & f(x) \\ \hline 2.9 & 200 \\ \hdashline 2.99 & 20000 \\ \hdashline 2.999 & 2000000 \\ \hdashline 2.9999 & 200000000 \\ \hdashline 3.0001 & 200000000 \\ \hdashline 3.001 & 2000000 \\ \hdashline 3.01 & 20000 \\ \hdashline 3.1 & 200 \\ \hdashline \end{array}

lim⁑xβ†’32(xβˆ’3)2=∞\lim\limits_{x\to 3}\dfrac{2}{(x-3)^2}=\infin


b)


lim⁑xβ†’32(xβˆ’3)3\lim\limits_{x\to 3}\dfrac{2}{(x-3)^3}xf(x)2.9βˆ’20002.99βˆ’20000002.999βˆ’20000000002.9999βˆ’20000000000003.000120000000000003.00120000000003.0120000003.12000\def\arraystretch{1.5} \begin{array}{c:c} x & f(x) \\ \hline 2.9 & -2000 \\ \hdashline 2.99 & -2000000 \\ \hdashline 2.999 & -2000000000 \\ \hdashline 2.9999 & -2000000000000 \\ \hdashline 3.0001 & 2000000000000 \\ \hdashline 3.001 & 2000000000 \\ \hdashline 3.01 & 2000000 \\ \hdashline 3.1 & 2000 \\ \hdashline \end{array}

lim⁑xβ†’32(xβˆ’3)3=DNE(does not exist)\lim\limits_{x\to 3}\dfrac{2}{(x-3)^3}=DNE(\text{does not exist})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment