Use the method of disks/rings to determine the volume of the solid obtained by rotating the region bounded by y=2x^2 and y=x^3 about the x-axis.
"x_1=0, x_2=2"
"V=\\pi\\displaystyle\\int_{0}^{2}\\big((2x^2)^2-(x^3)^2\\big)dx"
"=\\pi\\big[\\dfrac{4x^5}{5}-\\dfrac{x^7}{7}\\big]\\begin{matrix}\n 2 \\\\\n 0\n\\end{matrix}=\\pi(\\dfrac{4(2)^5}{5}-\\dfrac{(2)^7}{7}-0)"
"=\\dfrac{256\\pi}{35}({units}^3)"
Comments
Leave a comment