Decompose (x^2+x+1)/((x+3)(x^2-x+1))
"\\frac{x^2+x+1}{(x+3)(x^2-x+1)}=\\frac{A}{x+3}+\\frac{Bx+C}{x^2-x+1}"
"x^2+x+1=A(x^2-x+1)+(Bx+C)(x+3)"
Let's find A, B and C by equating corresponding coefficients:
"1=A+B" (1)
"1=-A+3B+C" (2)
"1=A+3C" (3)
Substracting (3) from (1) we obtain:
"B=3C" (4)
Substitution (4) into (2) gives
"1=-A+10C" (5)
Adding (3) and (5) we obtain
"C=\\frac{2}{13}"
"B=\\frac{6}{13}"
"A=\\frac{7}{13}"
Answer:
"\\frac{x^2+x+1}{(x+3)(x^2-x+1)}=\\frac{7}{13}\\frac{1}{x+3}+\\frac{2}{13}\\frac{3x+1}{x^2-x+1}"
Comments
Leave a comment