Question #342421

Determine the area of the region bounded by x = y²-y-6 and x = 2y +4.

1
Expert's answer
2022-05-22T23:45:20-0400
y2y6=2y+4y^2-y-6=2y+4




y23y10=0y^2-3y-10=0

(y+2)(y5)=0(y+2)(y-5)=0


y1=2,y2=5y_1=-2, y_2=5




A=25(2y+4(y2y6)dyA=\displaystyle\int_{-2}^{5}(2y+4-(y^2-y-6)dy




=[y33+3y22+10y]52=[-\dfrac{y^3}{3}+\dfrac{3y^2}{2}+10y]\begin{matrix} 5 \\ -2 \end{matrix}


=1253+752+50(83+620)=3436(units2)=-\dfrac{125}{3}+\dfrac{75}{2}+50-(\dfrac{8}{3}+6-20)=\dfrac{343}{6}({units}^2)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS