Question #342412

Find the area, take the elements of the area perpendicular to the x-axis. x²-y+1=0; x-y+1=0.

1
Expert's answer
2022-05-19T18:48:24-0400
x2y+1=0=>y=x2+1x^2-y+1=0=>y=x^2+1

xy+1=0=>y=x+1x-y+1=0=>y=x+1

x2+1=x+1x^2+1=x+1

x1=0,x2=1x_1=0, x_2=1


y(0)=0+1=1y(0)=0+1=1

y(1)=1+1=2y(1)=1+1=2


x2y+1=0,x0x^2-y+1=0, x\ge0

x=y1x=\sqrt{y-1}

xy+1=0=>x=y1x-y+1=0=>x=y-1

A=01(x+1(x2+1))dxA=\displaystyle\int_{0}^{1}(x+1(-x^2+1))dx=[x22x33]10=\bigg[\dfrac{x^2}{2}-\dfrac{x^3}{3}\bigg]\begin{matrix} 1 \\ 0 \end{matrix}=1221330=16(units2)=\dfrac{1^2}{2}-\dfrac{1^3}{3}-0=\dfrac{1}{6}({units}^2)

(2(11)3/23(1)22+1)=16(units2)-(\dfrac{2(1-1)^{3/2}}{3}-\dfrac{(1)^2}{2}+1)=\dfrac{1}{6}({units}^2)

A=12(y1(y1))dyA=\displaystyle\int_{1}^{2}(\sqrt{y-1}-(y-1))dy=[2(y1)3/23y22+y]21=\bigg[\dfrac{2(y-1)^{3/2}}{3}-\dfrac{y^2}{2}+y\bigg]\begin{matrix} 2 \\ 1 \end{matrix}=2(21)3/23(2)22+2=\dfrac{2(2-1)^{3/2}}{3}-\dfrac{(2)^2}{2}+2

(2(11)3/23(1)22+1)=16(units2)-(\dfrac{2(1-1)^{3/2}}{3}-\dfrac{(1)^2}{2}+1)=\dfrac{1}{6}({units}^2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS