Find the area, take the elements of the area perpendicular to the x-axis. x²-y+1=0; x-y+1=0.
"x-y+1=0=>y=x+1"
"x^2+1=x+1"
"x_1=0, x_2=1"
"y(1)=1+1=2"
"x=\\sqrt{y-1}"
"x-y+1=0=>x=y-1"
"A=\\displaystyle\\int_{0}^{1}(x+1(-x^2+1))dx""=\\bigg[\\dfrac{x^2}{2}-\\dfrac{x^3}{3}\\bigg]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}""=\\dfrac{1^2}{2}-\\dfrac{1^3}{3}-0=\\dfrac{1}{6}({units}^2)"
"-(\\dfrac{2(1-1)^{3\/2}}{3}-\\dfrac{(1)^2}{2}+1)=\\dfrac{1}{6}({units}^2)"
"A=\\displaystyle\\int_{1}^{2}(\\sqrt{y-1}-(y-1))dy""=\\bigg[\\dfrac{2(y-1)^{3\/2}}{3}-\\dfrac{y^2}{2}+y\\bigg]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}""=\\dfrac{2(2-1)^{3\/2}}{3}-\\dfrac{(2)^2}{2}+2"
"-(\\dfrac{2(1-1)^{3\/2}}{3}-\\dfrac{(1)^2}{2}+1)=\\dfrac{1}{6}({units}^2)"
Comments
Leave a comment