Answer to Question #342532 in Calculus for kate lim

Question #342532

Find the centroid for the region bounded by y=3−e-X, the x−axis, x=2, and the y−axis.

 


1
Expert's answer
2022-05-19T12:03:20-0400

ANSWER The centroid of the region is (xC,yC)(x_{C},y_{C}) : xC=5+3e25+e21.053,yC=254+3e2e445+e21.295x_{C}=\frac{5+3e^{-2}}{5+e^{-2}}\cong1.053, y_{C}=\frac{\frac{25}{4}+3e^{-2}-\frac{e^{-4}}{4}}{5+e^{-2}}\cong1.295


EXPLANATION

The centroid of the plane region D={(x,y):0x2,0y3ex}D=\left\{(x,y): 0\leq x\leq 2, 0\leq y\leq 3-e^{-x}\right\} is (xC,yC)(x_{C},y_{C}) , where xC=Mx=0A,yC=My=0Ax_{C}=\frac{M_{x=0}}{A},\, y_{C}=\frac{M_{y=0}}{A} and A=02(3ex)dx,Mx=0=02x(3ex)dx,My=0=1202(3ex)2dy.A=\int_{0}^{2}(3-e^{-x} ) dx, \, M_{x=0}=\int_{0}^{2}x\cdot(3-e^{-x} ) dx,\, M_{y=0}=\frac{1}{2}\int_{0}^{2} (3-e^{-x} )^{2} dy.

We calculate these integrals.

1) A=02(3ex)dx=[3x+ex]02=6+e21=5+e25.1353A=\int_{0}^{2}(3-e^{-x} ) dx = \left [ 3x+e^{-x} \right ]_{0}^{2}=6+e^{-2} -1=5+e^{ -2}\cong5.1353 .

2) Let x=u,(3ex)dx=dvx=u, \, (3-e^{-x} )dx=dv , then dx=du,dx=du, v=3x+exv=3x+e^{-x} and

Mx=0=02x(3ex)dx=[x(3x+ex)]0202(3x+ex)dx==(12+2e2)[3x22ex]02=(12+2e2)[6e2+1]=5+3e25.4060M_{x=0}=\int_{0}^{2}x\cdot \left ( 3-e^{-x} \right )dx=\left [ x\cdot \left ( 3x+e^{-x} \right ) \right ]_{0}^{2}-\int_{0}^{2}\left ( 3x+e^{-x} \right )dx=\\=\left ( 12+2e^{-2} \right )-\left [ \frac{3x^{2}}{2}-e^{-x} \right ]_{0}^{2}= (12+2e^{-2})-[6-e^{-2}+1]=5+3e^{-2}\cong5.4060

3) My=0=1202(3ex)2dx=1202(96ex+e2x)dx=12[9x+6exe2x2]02=12(18+6e2e426+12)=254+3e2e446.6514M_{y=0}=\frac{1}{2}\int_{0}^{2}\left ( 3-e^{-x} \right )^{2} dx=\frac{1}{2}\int_{0}^{2}\left ( 9-6e^{-x} +e^{-2x}\right ) dx=\frac{1}{2}\left [ 9x+6e^{-x} -\frac{e^{-2x}}{2}\right ]_{0}^{2}=\frac{1}{2}\left ( 18+6e^{-2 } -\frac{e^{-4}}{2}-6+\frac{1}{2}\right )=\frac{25}{4}+3e^{-2}-\frac{e^{-4}}{4}\cong6.6514


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment