ANSWER The centroid of the region is (xC,yC) : xC=5+e−25+3e−2≅1.053,yC=5+e−2425+3e−2−4e−4≅1.295
EXPLANATION
The centroid of the plane region D={(x,y):0≤x≤2,0≤y≤3−e−x} is (xC,yC) , where xC=AMx=0,yC=AMy=0 and A=∫02(3−e−x)dx,Mx=0=∫02x⋅(3−e−x)dx,My=0=21∫02(3−e−x)2dy.
We calculate these integrals.
1) A=∫02(3−e−x)dx=[3x+e−x]02=6+e−2−1=5+e−2≅5.1353 .
2) Let x=u,(3−e−x)dx=dv , then dx=du, v=3x+e−x and
Mx=0=∫02x⋅(3−e−x)dx=[x⋅(3x+e−x)]02−∫02(3x+e−x)dx==(12+2e−2)−[23x2−e−x]02=(12+2e−2)−[6−e−2+1]=5+3e−2≅5.4060
3) My=0=21∫02(3−e−x)2dx=21∫02(9−6e−x+e−2x)dx=21[9x+6e−x−2e−2x]02=21(18+6e−2−2e−4−6+21)=425+3e−2−4e−4≅6.6514
Comments
Leave a comment