Question #341508

Using polar coordinates find if the limit does or does not exist for


Lim(x,y)approaches(0,0) (2x/(x^2+X+y^2))

1
Expert's answer
2022-05-20T08:30:25-0400

Let x=rcosθ,y=rsinθ.x=r\cos \theta, y=r\sin\theta. Then


2xx2+x+y2=2rcosθr2+rcosθ=2cosθr+cosθ\dfrac{2x}{x^2+x+y^2}=\dfrac{2r\cos \theta}{r^2+r\cos \theta}=\dfrac{2\cos \theta}{r+\cos \theta}

The limit exists and


lim(x,y)(0,0)2xx2+x+y2=limr02cosθr+cosθ\lim\limits_{(x,y)\to(0,0)}\dfrac{2x}{x^2+x+y^2}=\lim\limits_{r\to0}\dfrac{2\cos \theta}{r+\cos \theta}

=2cosθ0+cosθ=2=\dfrac{2\cos \theta}{0+\cos \theta}=2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS