y=4βx28β
1. 4βx2ξ =0βxξ =Β±2
Domain:
(ββ;β2)βͺ(β2,2)βͺ(2,β)
2. y-yβ intersection:
x=0, y=4β(0)28β=2
Point (0, 2)
xβ intersection(s):
y=0, 0=4βx28β
No solution
There are no xx -intersections.
3. y(βx)=4β(βx)28β=4βx38β=y(x)
The function is even on its domain. The garph is symmetric with respect to yy -axis.
4. limβxββ2ββ(4βx28β)=ββ
limβxββ2+β(4βx28β)=β
limβxβ2ββ(4βx28β)=β
limβxβ2+β(4βx28β)=ββ
Vertical asymptotes: x=-2, x=2.x=β2,x=2.
limβxββββ(4βx28β)=0
limβxβββ(4βx28β)=0
Horizontal asymptote: y=0.y=0.
5. yβ²Β°(4βx28β)β²=(4βx2)216β
Find the critical number(s):
yβ²=0β(4βx2)216xβ=0βx=0,xξ =Β±2
If x<-2, y'<0, y decreases.
If -2<x<0, y'<0, y decreases.
If 0<x<2, y'>0, y increases.
If x>2, y'>0, y increases.
y(0)=4β(0)28β=2
The function yy has a local minimum with value of 2 at x=0.
6. y"=((4βx2)216xβ)β²=(4βx2)416(4βx2)2β2x(4βx2)(β2x)β=(4βx2)316(4βx2+4x2β=(4βx2)316(4+3x2)β
If x<-2, y'<0, y is concave down.
If β2<x<2,yβ²β²>0,y is concave up.
If x>2, y''<0, y is concave down.
7. Sketch the graph.
Comments