Question #341353

Trace the curve 𝑦 = 8/4-x^2 , and state all the properties you use to trace it. 


1
Expert's answer
2022-05-16T16:14:03-0400

y=84βˆ’x2y=\frac{8}{4-x^2}

1. 4βˆ’x2=ΜΈ0β‡’x=ΜΈΒ±24-x^2 \not =0 \Rightarrow x \not= \plusmn 2

Domain:

(βˆ’βˆž;βˆ’2)βˆͺ(βˆ’2,2)βˆͺ(2,∞)(βˆ’βˆž;βˆ’2)βˆͺ(βˆ’2,2)βˆͺ(2,∞)

2. y-yβˆ’ intersection:

x=0, y=84βˆ’(0)2=2y=\frac{8}{4-(0)^2}=2

Point (0, 2)


xβˆ’ intersection(s):

y=0, 0=84βˆ’x20=\frac{8}{4-x^2}

No solution


There are no xx -intersections.

3. y(βˆ’x)=84βˆ’(βˆ’x)2=84βˆ’x3=y(x)y(-x)=\frac{8}{4-(-x)^2}=\frac{8}{4-x^3}=y(x)

The function is even on its domain. The garph is symmetric with respect to yy -axis.

4. lim​xβ†’βˆ’2βˆ’(84βˆ’x2)=βˆ’βˆžlim_{ ​xβ†’βˆ’2^- } (\frac{8}{4-x^2}) =βˆ’βˆž

lim​xβ†’βˆ’2+(84βˆ’x2)=∞lim_{ ​xβ†’βˆ’2^+} (\frac{8}{4-x^2}) =∞

lim​xβ†’2βˆ’(84βˆ’x2)=∞lim_{ ​xβ†’2^- } (\frac{8}{4-x^2}) =∞

lim​xβ†’2+(84βˆ’x2)=βˆ’βˆžlim_{ ​xβ†’2^+ } (\frac{8}{4-x^2}) =βˆ’βˆž

Vertical asymptotes: x=-2, x=2.x=βˆ’2,x=2.

lim​xβ†’βˆ’βˆž(84βˆ’x2)=0lim_{ ​xβ†’βˆ’βˆž} (\frac{8}{4-x^2}) =0

lim​xβ†’βˆž(84βˆ’x2)=0lim_{ ​xβ†’βˆž} (\frac{8}{4-x^2}) =0

Horizontal asymptote: y=0.y=0.

5. yβ€²Β°(84βˆ’x2)β€²=16(4βˆ’x2)2y'Β°(\frac{8}{4-x^2})'=\frac{16}{(4-x^2)^2}

Find the critical number(s):

yβ€²=0β‡’16x(4βˆ’x2)2=0β‡’x=0,x=ΜΈΒ±2y'=0 \Rightarrow \frac{16x}{(4-x^2)^2}=0 \Rightarrow x=0, x\not= \plusmn 2

If x<-2, y'<0, y decreases.

If -2<x<0, y'<0, y decreases.

If 0<x<2, y'>0, y increases.

If x>2, y'>0, y increases.

y(0)=84βˆ’(0)2=2y(0)=\frac{8}{4-(0)^2}=2

The function yy has a local minimum with value of 2 at x=0.

6. y"=(16x(4βˆ’x2)2)β€²=16(4βˆ’x2)2βˆ’2x(4βˆ’x2)(βˆ’2x)(4βˆ’x2)4=16(4βˆ’x2+4x2(4βˆ’x2)3=16(4+3x2)(4βˆ’x2)3y"=(\frac{16x}{(4-x^2)^2})'=\frac{16(4-x^2)^2-2x(4-x^2)(-2x)}{(4-x^2)^4}=\frac{16(4-x^2+4x^2}{(4-x^2)^3}=\frac{16(4+3x^2)}{(4-x^2)^3}

If x<-2, y'<0, y is concave down.

If βˆ’2<x<2,yβ€²β€²>0,y-2<x<2, y''>0, y is concave up.

If x>2, y''<0, y is concave down.

7. Sketch the graph.






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS