Trace the curve 𝑦 = 8/4-x^2 , and state all the properties you use to trace it.
"y=\\frac{8}{4-x^2}"
1. "4-x^2 \\not =0 \\Rightarrow x \\not= \\plusmn 2"
Domain:
"(\u2212\u221e;\u22122)\u222a(\u22122,2)\u222a(2,\u221e)"
2. y-y− intersection:
x=0, "y=\\frac{8}{4-(0)^2}=2"
Point (0, 2)
x− intersection(s):
y=0, "0=\\frac{8}{4-x^2}"
No solution
There are no xx -intersections.
3. "y(-x)=\\frac{8}{4-(-x)^2}=\\frac{8}{4-x^3}=y(x)"
The function is even on its domain. The garph is symmetric with respect to yy -axis.
4. "lim_{\n\u200bx\u2192\u22122^- }\n(\\frac{8}{4-x^2})\n =\u2212\u221e"
"lim_{\n\u200bx\u2192\u22122^+}\n(\\frac{8}{4-x^2})\n =\u221e"
"lim_{\n\u200bx\u21922^- }\n(\\frac{8}{4-x^2})\n =\u221e"
"lim_{\n\u200bx\u21922^+ }\n(\\frac{8}{4-x^2})\n =\u2212\u221e"
Vertical asymptotes: x=-2, x=2.x=−2,x=2.
"lim_{\n\u200bx\u2192\u2212\u221e}\n(\\frac{8}{4-x^2})\n =0"
"lim_{\n\u200bx\u2192\u221e}\n(\\frac{8}{4-x^2})\n =0"
Horizontal asymptote: y=0.y=0.
5. "y'\u00b0(\\frac{8}{4-x^2})'=\\frac{16}{(4-x^2)^2}"
Find the critical number(s):
"y'=0 \\Rightarrow \\frac{16x}{(4-x^2)^2}=0 \\Rightarrow x=0, x\\not= \\plusmn 2"
If x<-2, y'<0, y decreases.
If -2<x<0, y'<0, y decreases.
If 0<x<2, y'>0, y increases.
If x>2, y'>0, y increases.
"y(0)=\\frac{8}{4-(0)^2}=2"
The function yy has a local minimum with value of 2 at x=0.
6. "y"=(\\frac{16x}{(4-x^2)^2})'=\\frac{16(4-x^2)^2-2x(4-x^2)(-2x)}{(4-x^2)^4}=\\frac{16(4-x^2+4x^2}{(4-x^2)^3}=\\frac{16(4+3x^2)}{(4-x^2)^3}"
If x<-2, y'<0, y is concave down.
If "-2<x<2, y''>0, y" is concave up.
If x>2, y''<0, y is concave down.
7. Sketch the graph.
Comments
Leave a comment