ANSWER The maximum value of z=6x−3x2+2y subject to the constraint y−x2=2 is z(3,11)=13 .
EXPLANATION
The set Γ describing the constraint is Γ={(x,2+x2):x∈R} .On the set Γ the function z(x,y)=6x−3x2+2y has the form z(x,2+x2)=6x−3x2+2(2+x2)=−x2+6x+4 for all x∈R . Denote h(x)=z(x,2+x2). Therefore ,
maxΓz(x,y)=maxRh(x) .
Since h′(x)=−2x+6 , then h′(x)>0 if x∈(−∞,3) and h′(x)<0 if x∈(3,+∞). h′(3)=0 . Since h increases on the interval (−∞,3) and decreases on the interval (3,+∞) then max(−∞,3)h(x)=h(3)=max(3,+∞)h(x) . So maxRh(x)=h(3)=−9+18+4=13 ⇒maxΓz(x,y)=13.
Comments
Leave a comment