Answer to Question #341053 in Calculus for katie

Question #341053

Find the maximum value of z=6x−3x2 +2y





subject to the constraint





y − x2 = 2

1
Expert's answer
2022-05-17T11:13:17-0400

ANSWER The maximum value of z=6x3x2+2yz=6x-3x^{2}+2y subject to the constraint yx2=2y-x^{2}=2 is z(3,11)=13z(3,11)=13 .

EXPLANATION

The set ΓΓ describing the constraint is Γ={(x,2+x2):xR}Γ=\left \{ \left ( x,2+x^{2} \right ): x\in \R \right \} .On the set ΓΓ the function z(x,y)=6x3x2+2yz(x,y)=6x-3x^{2}+2y has the form z(x,2+x2)=6x3x2+2(2+x2)=x2+6x+4z(x,2+x^{2})=6x-3x^{2}+2(2+x^{2})=-x^{2}+6x+4 for all xRx\in\R . Denote h(x)=z(x,2+x2).h(x)=z(x,2+x^{2}). Therefore ,

maxΓz(x,y)=maxRh(x)max_{Γ }z(x,y) =max_{\R}h(x) .

Since h(x)=2x+6h'(x)=-2x+6 , then h(x)>0h'(x)>0 if x(,3)x\in (-\infty,3) and h(x)<0h'(x)<0 if x(3,+)x\in(3,+\infty). h(3)=0h'(3)=0 . Since hh increases on the interval (,3)(-\infty,3) and decreases on the interval (3,+)(3,+\infty) then max(,3)h(x)=h(3)=max(3,+)h(x)max_{(-\infty,3)}h(x)=h(3)=max_{(3,+\infty)}h(x) . So maxRh(x)=h(3)=9+18+4=13max_{\R}h(x)=h(3)=-9+18+4=13 maxΓz(x,y)=13.\Rightarrow max_{Γ}z(x,y)=13.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment