Let R= the radius of the sphere.
Let AD=r,BD=h,∠ABC=θ.
△ABC
AC=2r,AO=OC=R,∠AOC=2∠ABC=2θ
The Law of Cosines
(2r)2=R2+R2−2R2cos(2θ)4r2=2R2(2sin2θ)r=Rsinθh=rtan(θ/2)=Rsinθtan(θ/2)Vcone=31πr2hVcone=Vcone(θ)=31πR3sin3θtan(θ/2)(Vcone)θ′=31πR3(3sin2θcos(θ)tan(θ/2)+21sin3θ(cos2(θ/2)1))Find the critical numbr(s)
(Vcone)θ′=031πR3(3sin2θcosθtan(θ/2)+2cos2(θ/2)sin3θ)=02cos2(θ/2)sin3θ(3cosθ+1)=0cosθ=−31If 0<θ<π−cos−1(1/3),(Vcone)θ′>0,Vcone increases.
If π−cos−1(1/3)<θ<π,(Vcone)θ′<0,Vcone decreases.
The volume of inscribed cone has the absolute maximum at
θ=π−cos−1(1/3)
Comments