Question #340924

: Let 𝑓(𝑥, 𝑦) = 𝑥^2 + 𝑦^3 . Find the slope of the line tangent to this surface at the point (-1, 1) and lying in the plane x = -1


1
Expert's answer
2022-05-17T00:20:16-0400

f(x,y)=x2+y3f\left(x,y\right)=x^2+y^3 , M=(1,1)M=\left(-1,1\right) ,

df(x,y)=fxdx+fydy=2xdx+3y2dydf\left(x,y\right)=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy=2xdx+{3y}^2dy ,

The equation of a plane tangent to a point M=(x0,y0)M=\left(x_0,y_0\right) of the surface  z=f(x,y)z=f\left(x,y\right)  has the form:

zz0=fx(x0,y0)(xx0)+fy(x0,y0)(yy0), z0=f(x0,y0)z-z_0={f\prime}_x\left(x_0,y_0\right)\left(x-x_0\right)+{f\prime}_y\left(x_0,y_0\right)\left(y-y_0\right),\ z_0=f\left(x_0,y_0\right) ,

z0=f(x0,y0)=2,fx(x0,y0)=2,fy(x0,y0)=3z_0=f\left(x_0,y_0\right)=2, {f\prime}_x\left(x_0,y_0\right)=-2, {f\prime}_y\left(x_0,y_0\right)=3 ,

Then

z2=2(x+1)+3(y1)z-2=-2\left(x+1\right)+3\left(y-1\right) ,

By x=1x=-1 given:

z2=3(y1)=k(y1), k=3z-2=3\left(y-1\right)=k\left(y-1\right),\ k=3.

Answer: the slope of the line tangent to this surface at the point (-1, 1) and lying in the plane x=–1 is k=3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS