Answer to Question #339755 in Calculus for lily

Question #339755

Show that the function f defined by


f(x,y) = {1, (x,y) = (0,0)

{(x2 + y)/(x + y), (x,y) ≠ (0,0)


is not continuous by using two path test at (0,0).


1
Expert's answer
2022-05-12T03:20:53-0400

If x=0x=0 then f(0,y)=0+y0+y=1.f(0, y)=\dfrac{0+y}{0+y}=1. Therefore


f(x,y)1 as (x,y)(0,0) along the yaxisf(x, y)\to 1\text{ as} \ (x,y)\to(0,0) \text{ along the }y-\text{axis}

For all x0x\not=0


f(x,x)=x2+xx+x=x+12f(x, x)=\dfrac{x^2+x}{x+x}=\dfrac{x+1}{2}

f(x,y)121 as (x,y)(0,0) along y=xf(x, y)\to \dfrac{1}{2}\not=1\text{ as} \ (x,y)\to(0,0) \text{ along }y=x

Since we have obtained different limits along different paths, limit


lim(x,y)(0,0)f(x,y)=lim(x,y)(0,0)x2+yx+y\lim\limits_{(x,y)\to(0,0)}f(x, y)=\lim\limits_{(x,y)\to(0,0)}\dfrac{x^2+y}{x+y}

does not exist.

The function

f(x,y)={1,(x,y)=(0,0)x2+yx+y,(x,y)(0,0)f(x, y)= \begin{cases} 1, & (x,y)=(0,0) \\ \dfrac{x^2+y}{x+y}, &(x,y)\not=(0,0) \end{cases}

is not continuous at (0,0).(0,0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment