Find the first partial derivative of
f(x,y) = "(4x-y)\/(4x+y)" at the point (4,2) for both x and y.
"f(x,y)=(4x-y)\/(4x+y)"
"f_x=\\frac{(4x-y)_x'(4x+y)-(4x+y)_x'(4x-y)}{(4x+y)^2}=\\frac{4(4x+y)-4(4x-y)}{(4x+y)^2}=\\frac{8y}{(4x+y)^2}"
At the point (4,2)
"f_x=\\frac{8(2)}{(4(4)+2)^2}=16\/324=4\/81"
"f_y=\\frac{(4x-y)_y'(4x+y)-(4x+y)_y'(4x-y)}{(4x+y)^2}=\\frac{-1(4x+y)-1(4x-y)}{(4x+y)^2}=\\frac{-8x}{(4x+y)^2}"
At the point (4,2)
"f_y=\\frac{-8(4)}{(4(4)+2)^2}=-32\/324=-8\/81"
Comments
Leave a comment