2.
(a)
P(1)=2(1)4+15(1)3+31(1)2+20(1)+4
=72=0 Therefore (x−1) is not a factor of P(x).
(b) Since all coefficients are integers, we can apply the Rational Zeros Theorem.
The coefficient of the constant term is 4. Find its factors: ±1,±2,±4.
These are the possible values for p.
The leading coefficient is 2. Find its factors: ±1,±2.
These are the possible values for q.
Find all possible values of p/q: ±21,±1,±2,±4.
Possible rational roots: ±21,±1,±2,±4.
(c)
Check the possible roots
21:P(21)=2(21)4+15(21)3+31(21)2+20(21)+4
=495=0
−21:P(−21)=2(−21)4+15(−21)3+31(−21)2
+20(−21)+4=0
1:P(1)=2(1)4+15(1)3+31(1)2+20(1)+4
=72=0
−1:P(−1)=2(−1)4+15(−1)3+31(−1)2
+20(−1)+4=2=0
2:P(2)=2(2)4+15(2)3+31(2)2+20(2)+4
=320=0
−2:P(−2)=2(−2)4+15(−2)3+31(−2)2
+20(−2)+4=0
4:P(4)=2(4)4+15(4)3+31(4)2+20(4)+4
=2052=0
−4:P(−4)=2(−4)4+15(−4)3+31(−4)2
+20(−4)+4=−28=0 Actual rational roots: −21,−2.
2x4+15x3+31x2+20x+4
=(2x+1)(x+2)(x2+5x+2)
x2+5x+2=0
D=25−8=17
x=2−5±17 Total roots:−21,−2,2−5−17,2−5+17
Comments
Leave a comment