2.
(a)
P ( 1 ) = 2 ( 1 ) 4 + 15 ( 1 ) 3 + 31 ( 1 ) 2 + 20 ( 1 ) + 4 P(1)=2(1)^4 +15(1)^3 +31(1)^2 +20(1)+4 P ( 1 ) = 2 ( 1 ) 4 + 15 ( 1 ) 3 + 31 ( 1 ) 2 + 20 ( 1 ) + 4
= 72 ≠ 0 =72\not=0 = 72 = 0 Therefore ( x − 1 ) (x −1) ( x − 1 ) is not a factor of P ( x ) . P (x). P ( x ) .
(b) Since all coefficients are integers, we can apply the Rational Zeros Theorem.
The coefficient of the constant term is 4. Find its factors: ± 1 , ± 2 , ± 4. \pm1, \pm2, \pm4. ± 1 , ± 2 , ± 4.
These are the possible values for p . p. p .
The leading coefficient is 2. 2. 2. Find its factors: ± 1 , ± 2. \pm1, \pm2. ± 1 , ± 2.
These are the possible values for q . q. q .
Find all possible values of p / q : p/q: p / q : ± 1 2 , ± 1 , ± 2 , ± 4. \pm\dfrac{1}{2}, \pm1, \pm2, \pm4. ± 2 1 , ± 1 , ± 2 , ± 4.
Possible rational roots: ± 1 2 , ± 1 , ± 2 , ± 4. \pm\dfrac{1}{2}, \pm1, \pm2, \pm4. ± 2 1 , ± 1 , ± 2 , ± 4.
(c)
Check the possible roots
1 2 : P ( 1 2 ) = 2 ( 1 2 ) 4 + 15 ( 1 2 ) 3 + 31 ( 1 2 ) 2 + 20 ( 1 2 ) + 4 \dfrac{1}{2}: P(\dfrac{1}{2})=2(\dfrac{1}{2})^4 +15(\dfrac{1}{2})^3 +31(\dfrac{1}{2})^2 +20(\dfrac{1}{2})+4 2 1 : P ( 2 1 ) = 2 ( 2 1 ) 4 + 15 ( 2 1 ) 3 + 31 ( 2 1 ) 2 + 20 ( 2 1 ) + 4
= 95 4 ≠ 0 =\dfrac{95}{4}\not=0 = 4 95 = 0
− 1 2 : P ( − 1 2 ) = 2 ( − 1 2 ) 4 + 15 ( − 1 2 ) 3 + 31 ( − 1 2 ) 2 -\dfrac{1}{2}: P(-\dfrac{1}{2})=2(-\dfrac{1}{2})^4 +15(-\dfrac{1}{2})^3 +31(-\dfrac{1}{2})^2 − 2 1 : P ( − 2 1 ) = 2 ( − 2 1 ) 4 + 15 ( − 2 1 ) 3 + 31 ( − 2 1 ) 2
+ 20 ( − 1 2 ) + 4 = 0 +20(-\dfrac{1}{2})+4=0 + 20 ( − 2 1 ) + 4 = 0
1 : P ( 1 ) = 2 ( 1 ) 4 + 15 ( 1 ) 3 + 31 ( 1 ) 2 + 20 ( 1 ) + 4 1: P(1)=2(1)^4 +15(1)^3 +31(1)^2 +20(1)+4 1 : P ( 1 ) = 2 ( 1 ) 4 + 15 ( 1 ) 3 + 31 ( 1 ) 2 + 20 ( 1 ) + 4
= 72 ≠ 0 =72\not=0 = 72 = 0
− 1 : P ( − 1 ) = 2 ( − 1 ) 4 + 15 ( − 1 ) 3 + 31 ( − 1 ) 2 -1: P(-1)=2(-1)^4 +15(-1)^3 +31(-1)^2 − 1 : P ( − 1 ) = 2 ( − 1 ) 4 + 15 ( − 1 ) 3 + 31 ( − 1 ) 2
+ 20 ( − 1 ) + 4 = 2 ≠ 0 +20(-1)+4=2\not=0 + 20 ( − 1 ) + 4 = 2 = 0
2 : P ( 2 ) = 2 ( 2 ) 4 + 15 ( 2 ) 3 + 31 ( 2 ) 2 + 20 ( 2 ) + 4 2: P(2)=2(2)^4 +15(2)^3 +31(2)^2 +20(2)+4 2 : P ( 2 ) = 2 ( 2 ) 4 + 15 ( 2 ) 3 + 31 ( 2 ) 2 + 20 ( 2 ) + 4
= 320 ≠ 0 =320\not=0 = 320 = 0
− 2 : P ( − 2 ) = 2 ( − 2 ) 4 + 15 ( − 2 ) 3 + 31 ( − 2 ) 2 -2: P(-2)=2(-2)^4 +15(-2)^3 +31(-2)^2 − 2 : P ( − 2 ) = 2 ( − 2 ) 4 + 15 ( − 2 ) 3 + 31 ( − 2 ) 2
+ 20 ( − 2 ) + 4 = 0 +20(-2)+4=0 + 20 ( − 2 ) + 4 = 0
4 : P ( 4 ) = 2 ( 4 ) 4 + 15 ( 4 ) 3 + 31 ( 4 ) 2 + 20 ( 4 ) + 4 4: P(4)=2(4)^4 +15(4)^3 +31(4)^2 +20(4)+4 4 : P ( 4 ) = 2 ( 4 ) 4 + 15 ( 4 ) 3 + 31 ( 4 ) 2 + 20 ( 4 ) + 4
= 2052 ≠ 0 =2052\not=0 = 2052 = 0
− 4 : P ( − 4 ) = 2 ( − 4 ) 4 + 15 ( − 4 ) 3 + 31 ( − 4 ) 2 -4: P(-4)=2(-4)^4 +15(-4)^3 +31(-4)^2 − 4 : P ( − 4 ) = 2 ( − 4 ) 4 + 15 ( − 4 ) 3 + 31 ( − 4 ) 2
+ 20 ( − 4 ) + 4 = − 28 ≠ 0 +20(-4)+4=-28\not=0 + 20 ( − 4 ) + 4 = − 28 = 0 Actual rational roots: − 1 2 , − 2. -\dfrac{1}{2}, -2. − 2 1 , − 2.
2 x 4 + 15 x 3 + 31 x 2 + 20 x + 4 2x^4+15x^3 +31x^2 +20x +4 2 x 4 + 15 x 3 + 31 x 2 + 20 x + 4
= ( 2 x + 1 ) ( x + 2 ) ( x 2 + 5 x + 2 ) =(2x+1)(x+2)(x^2+5x+2) = ( 2 x + 1 ) ( x + 2 ) ( x 2 + 5 x + 2 )
x 2 + 5 x + 2 = 0 x^2+5x+2=0 x 2 + 5 x + 2 = 0
D = 25 − 8 = 17 D=25-8=17 D = 25 − 8 = 17
x = − 5 ± 17 2 x=\dfrac{-5\pm\sqrt{17}}{2} x = 2 − 5 ± 17 Total roots:− 1 2 , − 2 , − 5 − 17 2 , − 5 + 17 2 -\dfrac{1}{2}, -2,\dfrac{-5-\sqrt{17}}{2},\dfrac{-5+\sqrt{17}}{2} − 2 1 , − 2 , 2 − 5 − 17 , 2 − 5 + 17
Comments