Answer to Question #339505 in Calculus for Momo

Question #339505

2. Let P (x) = 2x4 +15x3 +31x2 +20x +4

(a) Determine whether (x −1) is a factor of P (x). (2)

(b) Find all the possible rational zeros of P (x) by using the Rational Zeros Theorem. (2)

(c) Solve P (x) = 0


1
Expert's answer
2022-05-11T12:43:12-0400

2.

(a)

P(1)=2(1)4+15(1)3+31(1)2+20(1)+4P(1)=2(1)^4 +15(1)^3 +31(1)^2 +20(1)+4

=720=72\not=0

Therefore (x1)(x −1) is not a factor of P(x).P (x).

(b) Since all coefficients are integers, we can apply the Rational Zeros Theorem.

The coefficient of the constant term is 4. Find its factors: ±1,±2,±4.\pm1, \pm2, \pm4.

These are the possible values for p.p.

The leading coefficient is 2.2. Find its factors: ±1,±2.\pm1, \pm2.

These are the possible values for q.q.

Find all possible values of p/q:p/q: ±12,±1,±2,±4.\pm\dfrac{1}{2}, \pm1, \pm2, \pm4.

Possible rational roots: ±12,±1,±2,±4.\pm\dfrac{1}{2}, \pm1, \pm2, \pm4.


(c)

Check the possible roots


12:P(12)=2(12)4+15(12)3+31(12)2+20(12)+4\dfrac{1}{2}: P(\dfrac{1}{2})=2(\dfrac{1}{2})^4 +15(\dfrac{1}{2})^3 +31(\dfrac{1}{2})^2 +20(\dfrac{1}{2})+4

=9540=\dfrac{95}{4}\not=0


12:P(12)=2(12)4+15(12)3+31(12)2-\dfrac{1}{2}: P(-\dfrac{1}{2})=2(-\dfrac{1}{2})^4 +15(-\dfrac{1}{2})^3 +31(-\dfrac{1}{2})^2

+20(12)+4=0+20(-\dfrac{1}{2})+4=0


1:P(1)=2(1)4+15(1)3+31(1)2+20(1)+41: P(1)=2(1)^4 +15(1)^3 +31(1)^2 +20(1)+4

=720=72\not=0


1:P(1)=2(1)4+15(1)3+31(1)2-1: P(-1)=2(-1)^4 +15(-1)^3 +31(-1)^2

+20(1)+4=20+20(-1)+4=2\not=0


2:P(2)=2(2)4+15(2)3+31(2)2+20(2)+42: P(2)=2(2)^4 +15(2)^3 +31(2)^2 +20(2)+4

=3200=320\not=0


2:P(2)=2(2)4+15(2)3+31(2)2-2: P(-2)=2(-2)^4 +15(-2)^3 +31(-2)^2

+20(2)+4=0+20(-2)+4=0


4:P(4)=2(4)4+15(4)3+31(4)2+20(4)+44: P(4)=2(4)^4 +15(4)^3 +31(4)^2 +20(4)+4

=20520=2052\not=0


4:P(4)=2(4)4+15(4)3+31(4)2-4: P(-4)=2(-4)^4 +15(-4)^3 +31(-4)^2

+20(4)+4=280+20(-4)+4=-28\not=0

Actual rational roots: 12,2.-\dfrac{1}{2}, -2.


2x4+15x3+31x2+20x+42x^4+15x^3 +31x^2 +20x +4

=(2x+1)(x+2)(x2+5x+2)=(2x+1)(x+2)(x^2+5x+2)

x2+5x+2=0x^2+5x+2=0

D=258=17D=25-8=17

x=5±172x=\dfrac{-5\pm\sqrt{17}}{2}

Total roots:12,2,5172,5+172-\dfrac{1}{2}, -2,\dfrac{-5-\sqrt{17}}{2},\dfrac{-5+\sqrt{17}}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment