5. Decompose
(i)
x2 +x +1
(x +3)(x2 −x +1)
(ii)
x4 −x3 −2x2 +4x +1
x (x −1)2
(i)
"=\\dfrac{A(x^2-x+1)+(Bx+C)(x+3)}{(x +3)(x^2 \u2212x +1)}"
"=\\dfrac{Ax^2-Ax+A+Bx^2+3Bx+Cx+3C}{(x +3)(x^2 \u2212x +1)}"
"x^2:A+B=1"
"x^1:-A+3B+C=1"
"x^0:A+3C=1"
"A=1-3C"
"B=3C"
"-1+3C+9C+C=1"
"B=\\dfrac{6}{13}"
"C=\\dfrac{2}{13}"
"\\dfrac{x^2+x+1}{(x +3)(x^2 \u2212x +1)}=\\dfrac{\\dfrac{7}{13}}{x+3}+\\dfrac{\\dfrac{6}{13}x+\\dfrac{2}{13}}{x^2 \u2212x +1}"
(ii)
"+\\dfrac{x(x^2-2x+1)}{x(x -1)^2}+\\dfrac{-x^2+3x+1}{x(x -1)^2}"
"=x+1+\\dfrac{-x^2+3x+1}{x(x -1)^2}"
"\\dfrac{-x^2+3x+1}{x(x -1)^2}=\\dfrac{A}{x}+\\dfrac{B}{x-1}+\\dfrac{C}{(x-1)^2}"
"=\\dfrac{A(x-1)^2+Bx(x-1)+Cx}{x(x -1)^2}"
"=\\dfrac{Ax^2-2Ax+A+Bx^2-Bx+Cx}{x(x -1)^2}"
"x^2:A+B=-1"
"x^1:-2A-B+C=3"
"x^0:A=1"
"A=1"
"B=-2"
"C=3"
"\\dfrac{-x^2+3x+1}{x(x -1)^2}=\\dfrac{1}{x}+\\dfrac{-2}{x-1}+\\dfrac{3}{(x-1)^2}"
Therefore
"\\dfrac{x^4 \u2212x^3 \u22122x^2 +4x +1}{x(x -1)^2}""=x+1+\\dfrac{1}{x}+\\dfrac{-2}{x-1}+\\dfrac{3}{(x-1)^2}"
Comments
Leave a comment