Find the Center of mass of a thin plate of constant density πΏ covering the region bounded by the parabola π¦ = π₯2 and the line π¦ = 4.
Solution
Points of intersection of given curves are solution of equation π₯2 = 4 => x1 = a = -2, x2 = b = 2.
For density πΏ mass of the plate is
"M=\\delta\\int_{a}^{b}{\\left(4-x^2\\right)dx=}\\delta\\left(4x-\\frac{1}{3}x^3\\right)\\left|\\begin{matrix}2\\\\-2\\\\\\end{matrix}\\right.=\\delta\\left(16-\\frac{16}{3}\\right)=\\delta\\frac{32}{3}"
Equations of Moments
"M_x=\\delta\\int_{-2}^{2}{\\frac{1}{2}\\left[4^2-\\left(x^2\\right)^2\\right]dx}=\\delta\\left[8x-\\frac{1}{10}x^5\\right]\\left|\\begin{matrix}2\\\\-2\\\\\\end{matrix}\\right.=\\delta\\left[32-\\frac{64}{10}\\right]=25.6\\delta"
"M_y=\\delta\\int_{-2}^{2}x\\left(4-x^2\\right)dx=\\delta\\left[2x^2-\\frac{1}{4}x^4\\right]\\left|\\begin{matrix}2\\\\-2\\\\\\end{matrix}\\right.=0"
Center of Mass Coordinates
"x_C=\\frac{M_y}{M}=0"
"y_C=\\frac{M_x}{M}=\\frac{256\\bullet3}{320}=2.4"
Comments
Leave a comment