Solution
Points of intersection of given curves are solution of equation 𝑥2 = 4 => x1 = a = -2, x2 = b = 2.
For density 𝛿 mass of the plate is
M = δ ∫ a b ( 4 − x 2 ) d x = δ ( 4 x − 1 3 x 3 ) ∣ 2 − 2 = δ ( 16 − 16 3 ) = δ 32 3 M=\delta\int_{a}^{b}{\left(4-x^2\right)dx=}\delta\left(4x-\frac{1}{3}x^3\right)\left|\begin{matrix}2\\-2\\\end{matrix}\right.=\delta\left(16-\frac{16}{3}\right)=\delta\frac{32}{3} M = δ ∫ a b ( 4 − x 2 ) d x = δ ( 4 x − 3 1 x 3 ) ∣ ∣ 2 − 2 = δ ( 16 − 3 16 ) = δ 3 32
Equations of Moments
M x = δ ∫ − 2 2 1 2 [ 4 2 − ( x 2 ) 2 ] d x = δ [ 8 x − 1 10 x 5 ] ∣ 2 − 2 = δ [ 32 − 64 10 ] = 25.6 δ M_x=\delta\int_{-2}^{2}{\frac{1}{2}\left[4^2-\left(x^2\right)^2\right]dx}=\delta\left[8x-\frac{1}{10}x^5\right]\left|\begin{matrix}2\\-2\\\end{matrix}\right.=\delta\left[32-\frac{64}{10}\right]=25.6\delta M x = δ ∫ − 2 2 2 1 [ 4 2 − ( x 2 ) 2 ] d x = δ [ 8 x − 10 1 x 5 ] ∣ ∣ 2 − 2 = δ [ 32 − 10 64 ] = 25.6 δ
M y = δ ∫ − 2 2 x ( 4 − x 2 ) d x = δ [ 2 x 2 − 1 4 x 4 ] ∣ 2 − 2 = 0 M_y=\delta\int_{-2}^{2}x\left(4-x^2\right)dx=\delta\left[2x^2-\frac{1}{4}x^4\right]\left|\begin{matrix}2\\-2\\\end{matrix}\right.=0 M y = δ ∫ − 2 2 x ( 4 − x 2 ) d x = δ [ 2 x 2 − 4 1 x 4 ] ∣ ∣ 2 − 2 = 0
Center of Mass Coordinates
x C = M y M = 0 x_C=\frac{M_y}{M}=0 x C = M M y = 0
y C = M x M = 256 ∙ 3 320 = 2.4 y_C=\frac{M_x}{M}=\frac{256\bullet3}{320}=2.4 y C = M M x = 320 256 ∙ 3 = 2.4
Comments