Answer to Question #339414 in Calculus for alli

Question #339414

Find the Center of mass of a thin plate of constant density 𝛿 covering the region bounded by the parabola 𝑦 = 𝑥2 and the line 𝑦 = 4.


1
Expert's answer
2022-05-12T18:31:22-0400

Solution

Points of intersection of given curves are solution of equation 𝑥2 = 4 => x1 = a = -2, x2 = b = 2.

For density 𝛿 mass of the plate is

M=δab(4x2)dx=δ(4x13x3)22=δ(16163)=δ323M=\delta\int_{a}^{b}{\left(4-x^2\right)dx=}\delta\left(4x-\frac{1}{3}x^3\right)\left|\begin{matrix}2\\-2\\\end{matrix}\right.=\delta\left(16-\frac{16}{3}\right)=\delta\frac{32}{3}

Equations of Moments

Mx=δ2212[42(x2)2]dx=δ[8x110x5]22=δ[326410]=25.6δM_x=\delta\int_{-2}^{2}{\frac{1}{2}\left[4^2-\left(x^2\right)^2\right]dx}=\delta\left[8x-\frac{1}{10}x^5\right]\left|\begin{matrix}2\\-2\\\end{matrix}\right.=\delta\left[32-\frac{64}{10}\right]=25.6\delta

My=δ22x(4x2)dx=δ[2x214x4]22=0M_y=\delta\int_{-2}^{2}x\left(4-x^2\right)dx=\delta\left[2x^2-\frac{1}{4}x^4\right]\left|\begin{matrix}2\\-2\\\end{matrix}\right.=0

Center of Mass Coordinates

xC=MyM=0x_C=\frac{M_y}{M}=0

yC=MxM=2563320=2.4y_C=\frac{M_x}{M}=\frac{256\bullet3}{320}=2.4



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment