Consider the function g defined by:
g(x,y) = cos (xπ "\u221ay" ) + 1/log3(x - y)
Determine ∂2g/∂y∂x
Function "g(x,y)" has the form: "g(x,y)=\\cos(x\\pi\\sqrt{y})+\\frac{1}{log_3(x-y)}=\\cos(x\\pi\\sqrt{y})+\\frac{\\ln(3)}{ln(x-y)}".
We receive:
"\\frac{\\partial g}{\\partial y}=-\\frac{x\\pi}{2\\sqrt{y}}\\sin(x\\pi\\sqrt{y})+\\frac{\\ln(3)}{(\\ln(x-y))^2}\\cdot\\frac{1}{x-y}\\\\". "\\,\\frac{\\partial^2g}{\\partial y\\partial x}=-\\frac{\\pi}{2\\sqrt{y}}\\sin(x\\pi\\sqrt{y})-\\frac{x\\pi^2}{2}\\cos(x\\pi\\sqrt{y})-\\frac{(\\ln(3))(2+\\ln(x-y))}{(\\ln(x-y))^3}\\cdot\\frac{1}{(x-y)^2}".
Answer: "\\frac{\\partial^2g}{\\partial y\\partial x}=-\\frac{\\pi}{2\\sqrt{y}}\\sin(x\\pi\\sqrt{y})-\\frac{x\\pi^2}{2}\\cos(x\\pi\\sqrt{y})-\\frac{(\\ln(3))(2+\\ln(x-y))}{(\\ln(x-y))^3}\\cdot\\frac{1}{(x-y)^2}"
Comments
Leave a comment