Show that the minimum and maximum points of every curve in the family of polynomials
π(π₯) = 2π₯^3 + ππ₯^2 + 2π₯ lie on the curve π¦ = π₯ β π₯^3
"f'(x)=6x^2+2cx+2"
"f"(x)=12x+2c"
"f'(x)=0"
"6x^2+2cx+2=0"
"x_1=\\frac{-2c+\\sqrt{4c^2-48}}{12}"
"x_2=\\frac{-2c-\\sqrt{4c^2-48}}{12}"
"12x(\\frac{-2c+\\sqrt{4c^2-48}}{12})+2c=0"
"-2c+\\sqrt{4c^2-48}=-2c"
"4c^2-48=1"
"c=\\sqrt{49\/4}=\\plusmn 3.5"
If c=3.5
"f'(x)=6x^2+7x+2=0"
"D=49-48=1"
"x=\\frac{-7 \\plusmn \\sqrt1}{12}"
"x_1=-0.5"
"x_2=-2\/3"
"f"(-0.5)=12(-0.5)+2(3.5)=1>0"
So, it is minimum
"f"(-2\/3)=12(-2\/3)+2(3.5)=-1<0"
So, it is maximum
If c=-3.5
"f'(x)=6x^2-7x+2=0"
D=49-48=1
"x=\\frac{7 \\plusmn \\sqrt1}{12}"
x1=0.5
x2=2/3
"f"(-0.5)=12(0.5)+2(3.5)=13>0"
So it is minimum
f"(2/3)=12(2/3)+2(3.5)=15>0
So it is minimum
In this case
"x\\not=0, cx^2=-3x^3-x"
Substitute
"y=2x^3-3x^3-x+2x"
"y=-x^3+x"
Then the minimum and maximum points of every curve in the family of polynomials "f(x)=2x^3+cx^2+2x" lie on the curve y=x-x3
Comments
Leave a comment