f β² ( x ) = 6 x 2 + 2 c x + 2 f'(x)=6x^2+2cx+2 f β² ( x ) = 6 x 2 + 2 c x + 2
f " ( x ) = 12 x + 2 c f"(x)=12x+2c f " ( x ) = 12 x + 2 c
f β² ( x ) = 0 f'(x)=0 f β² ( x ) = 0
6 x 2 + 2 c x + 2 = 0 6x^2+2cx+2=0 6 x 2 + 2 c x + 2 = 0
x 1 = β 2 c + 4 c 2 β 48 12 x_1=\frac{-2c+\sqrt{4c^2-48}}{12} x 1 β = 12 β 2 c + 4 c 2 β 48 β β
x 2 = β 2 c β 4 c 2 β 48 12 x_2=\frac{-2c-\sqrt{4c^2-48}}{12} x 2 β = 12 β 2 c β 4 c 2 β 48 β β
12 x ( β 2 c + 4 c 2 β 48 12 ) + 2 c = 0 12x(\frac{-2c+\sqrt{4c^2-48}}{12})+2c=0 12 x ( 12 β 2 c + 4 c 2 β 48 β β ) + 2 c = 0
β 2 c + 4 c 2 β 48 = β 2 c -2c+\sqrt{4c^2-48}=-2c β 2 c + 4 c 2 β 48 β = β 2 c
4 c 2 β 48 = 1 4c^2-48=1 4 c 2 β 48 = 1
c = 49 / 4 = Β± 3.5 c=\sqrt{49/4}=\plusmn 3.5 c = 49/4 β = Β± 3.5
If c=3.5
f β² ( x ) = 6 x 2 + 7 x + 2 = 0 f'(x)=6x^2+7x+2=0 f β² ( x ) = 6 x 2 + 7 x + 2 = 0
D = 49 β 48 = 1 D=49-48=1 D = 49 β 48 = 1
x = β 7 Β± 1 12 x=\frac{-7 \plusmn \sqrt1}{12} x = 12 β 7 Β± 1 β β
x 1 = β 0.5 x_1=-0.5 x 1 β = β 0.5
x 2 = β 2 / 3 x_2=-2/3 x 2 β = β 2/3
f " ( β 0.5 ) = 12 ( β 0.5 ) + 2 ( 3.5 ) = 1 > 0 f"(-0.5)=12(-0.5)+2(3.5)=1>0 f " ( β 0.5 ) = 12 ( β 0.5 ) + 2 ( 3.5 ) = 1 > 0
So, it is minimum
f " ( β 2 / 3 ) = 12 ( β 2 / 3 ) + 2 ( 3.5 ) = β 1 < 0 f"(-2/3)=12(-2/3)+2(3.5)=-1<0 f " ( β 2/3 ) = 12 ( β 2/3 ) + 2 ( 3.5 ) = β 1 < 0
So, it is maximum
If c=-3.5
f β² ( x ) = 6 x 2 β 7 x + 2 = 0 f'(x)=6x^2-7x+2=0 f β² ( x ) = 6 x 2 β 7 x + 2 = 0
D=49-48=1
x = 7 Β± 1 12 x=\frac{7 \plusmn \sqrt1}{12} x = 12 7 Β± 1 β β
x1 =0.5
x2 =2/3
f " ( β 0.5 ) = 12 ( 0.5 ) + 2 ( 3.5 ) = 13 > 0 f"(-0.5)=12(0.5)+2(3.5)=13>0 f " ( β 0.5 ) = 12 ( 0.5 ) + 2 ( 3.5 ) = 13 > 0
So it is minimum
f"(2/3)=12(2/3)+2(3.5)=15>0
So it is minimum
In this case
x =ΜΈ 0 , c x 2 = β 3 x 3 β x x\not=0, cx^2=-3x^3-x x ξ = 0 , c x 2 = β 3 x 3 β x
Substitute
y = 2 x 3 β 3 x 3 β x + 2 x y=2x^3-3x^3-x+2x y = 2 x 3 β 3 x 3 β x + 2 x
y = β x 3 + x y=-x^3+x y = β x 3 + x
Then the minimum and maximum points of every curve in the family of polynomials f ( x ) = 2 x 3 + c x 2 + 2 x f(x)=2x^3+cx^2+2x f ( x ) = 2 x 3 + c x 2 + 2 x lie on the curve y=x-x3
Comments