Solve the corresponding equation for the appropriate interval by using the following two root finding techniques :
a) algebraic approach
sin(x+ π /2)=ln|x-1|
"f(x)=sin{(x+\\frac{\\pi}{2})}"
"f(0)=sin{(0+\\frac{\\pi}{2})}=sin{\\frac{\\pi}{2}}=1"
"f(\\pi)=sin{(\\pi+\\frac{\\pi}{2})}=sin{\\frac{3\\pi}{2}}=-1"
"f(\\frac{\\pi}{2})=sin{(\\frac{\\pi}{2}+\\frac{\\pi}{2})}=sin{\\pi}=0"
"f(x)=ln|x-1|"
"f(0)=ln|0-1|=ln1=0"
"f(\\pi)=ln|\\pi-1|=0,76155"
"f(\\frac{\\pi}{2})=ln|{\\frac{\\pi}{2}}-1|=-0,56072"
"f'(x)=sin'(x+\\frac{\\pi}{2})=cos(x+\\frac{\\pi}{2})"
"f\u2019(x)= cos(x+\\frac{\\pi}{2})=0"
"x+\\frac{\\pi}{2}=\\frac{\\pi}{2}+\\pi k, k\\in Z"
"x=\\frac{\\pi}{2}-\\frac{\\pi}{2}+\\pi k, k\\in Z"
"x=\\pi k,k \\in Z"
"f\u2019(x)=(ln|x-1|)\u2019=\\frac{1}{|x-1|}"
"\\frac{1}{|x-1|}=0"
"x\\in R\/(1)"
Comments
Leave a comment