f(x)=sin(x+2π)
f(0)=sin(0+2π)=sin2π=1
f(π)=sin(π+2π)=sin23π=−1
f(2π)=sin(2π+2π)=sinπ=0
f(x)=ln∣x−1∣
f(0)=ln∣0−1∣=ln1=0
f(π)=ln∣π−1∣=0,76155
f(2π)=ln∣2π−1∣=−0,56072
f′(x)=sin′(x+2π)=cos(x+2π)
f’(x)=cos(x+2π)=0
x+2π=2π+πk,k∈Z
x=2π−2π+πk,k∈Z
x=πk,k∈Z
f’(x)=(ln∣x−1∣)’=∣x−1∣1
∣x−1∣1=0
x∈R/(1)
Comments