Question #339677

Determine the dimensions of the right circular cylinder of

greatest volume that can be inscribed in a right circular cone of

radius 6 cm and height 9 cm.


1
Expert's answer
2022-05-11T17:28:30-0400

Using similar trianglr

Let h and r be the height and radius of cylinder respectively

Volume of cylinde:

V=πr2hV=\pi r^2h

96=h6r\frac{9}{6}=\frac{h}{6-r}

h=549r6h=\frac{54-9r}{6}

Put the value of the height into the formula for the volume of cylinder.

V=π549r6r2=π54r26π9rr26=9πr2π3r32V=18πr4,5πr2V=\pi \frac{54-9r}{6}r^2=\frac{\pi*54*r^2}{6}-\frac{\pi*9r*r^2}{6}=9\pi*r^2-\frac{\pi*3r^3}{2} V’=18\pi*r-4,5\pi*r^2

V=18πr4,5πr2V’=18\pi*r-4,5\pi*r^2

V=0V’=0

18πr4,5πr2=018\pi*r-4,5\pi*r^2=0

9πr(20,5r)=09\pi*r(2-0,5r)=0

r=0r=0

and

r=4r=4

h=54946=3h=\frac{54-9*4}{6}=3

V=π342=48π(cm3)V=\pi*3*4^2=48\pi(cm^3)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS