Use Lagrange Multipliers to find the maximum and minimum values of f(x,y)=xy
 subject to the constraint 4x^2+8y^2=16
.
"f(x,y)=xy, \\ \\ 4x^2+8y^2=16."
Let "g(x,y)=4x^2+8y^2."
We have "f_x=y,\\ \\ f_y=x" and "g_x=8x,\\ \\ g_y=16y."
"\\begin{cases}\nf_x=\\lambda g_x\n\\\\\nf_y=\\lambda g_y\n\\\\\n4x^2+8y^2=16\n\n\\end{cases}\n\n\\quad \n\\begin{cases}\ny=8\\lambda x\n\\\\\nx=16\\lambda y\n\\\\\n4x^2+8y^2=16\n\\end{cases}"
"x=16\\lambda y=16\\lambda \\cdot8\\lambda x=128\\lambda ^2x"
"x\\neq 0\\ \\Rightarrow \\ 128\\lambda^2=1,\\ \\ \\lambda =\\pm \\tfrac{1}{8\\sqrt{2}}"
"4x^2+8y^2=4x^2+8\\cdot (8\\lambda x)^2=8x^2=16"
"x=\\pm\\sqrt{2}," "y=\\pm1"
Maximum values: "f(\\sqrt{2},1)=f(-\\sqrt{2},-1)=\\sqrt{2}"
Minimum values:
"f(-\\sqrt{2},1)=f(\\sqrt{2},-1)=-\\sqrt{2}"
Answer: maximum value is "\\sqrt{2}" , minimum value is "-\\sqrt{2}" .
Comments
Leave a comment