f(x,y)=xy,  4x2+8y2=16. 
Let g(x,y)=4x2+8y2. 
We have fx=y,  fy=x  and  gx=8x,  gy=16y. 
⎩⎨⎧fx=λgxfy=λgy4x2+8y2=16⎩⎨⎧y=8λxx=16λy4x2+8y2=16
x=16λy=16λ⋅8λx=128λ2x 
x=0 ⇒ 128λ2=1,  λ=±821 
4x2+8y2=4x2+8⋅(8λx)2=8x2=16 
x=±2,  y=±1 
 Maximum values: f(2,1)=f(−2,−1)=2 
Minimum values: 
f(−2,1)=f(2,−1)=−2 
Answer: maximum value is 2 , minimum value is −2 .
                             
Comments