f ( x , y ) = x y , 4 x 2 + 8 y 2 = 16. f(x,y)=xy, \ \ 4x^2+8y^2=16. f ( x , y ) = x y , 4 x 2 + 8 y 2 = 16.
Let g ( x , y ) = 4 x 2 + 8 y 2 . g(x,y)=4x^2+8y^2. g ( x , y ) = 4 x 2 + 8 y 2 .
We have f x = y , f y = x f_x=y,\ \ f_y=x f x = y , f y = x and g x = 8 x , g y = 16 y . g_x=8x,\ \ g_y=16y. g x = 8 x , g y = 16 y .
{ f x = λ g x f y = λ g y 4 x 2 + 8 y 2 = 16 { y = 8 λ x x = 16 λ y 4 x 2 + 8 y 2 = 16 \begin{cases}
f_x=\lambda g_x
\\
f_y=\lambda g_y
\\
4x^2+8y^2=16
\end{cases}
\quad
\begin{cases}
y=8\lambda x
\\
x=16\lambda y
\\
4x^2+8y^2=16
\end{cases} ⎩ ⎨ ⎧ f x = λ g x f y = λ g y 4 x 2 + 8 y 2 = 16 ⎩ ⎨ ⎧ y = 8 λ x x = 16 λ y 4 x 2 + 8 y 2 = 16
x = 16 λ y = 16 λ ⋅ 8 λ x = 128 λ 2 x x=16\lambda y=16\lambda \cdot8\lambda x=128\lambda ^2x x = 16 λ y = 16 λ ⋅ 8 λ x = 128 λ 2 x
x ≠ 0 ⇒ 128 λ 2 = 1 , λ = ± 1 8 2 x\neq 0\ \Rightarrow \ 128\lambda^2=1,\ \ \lambda =\pm \tfrac{1}{8\sqrt{2}} x = 0 ⇒ 128 λ 2 = 1 , λ = ± 8 2 1
4 x 2 + 8 y 2 = 4 x 2 + 8 ⋅ ( 8 λ x ) 2 = 8 x 2 = 16 4x^2+8y^2=4x^2+8\cdot (8\lambda x)^2=8x^2=16 4 x 2 + 8 y 2 = 4 x 2 + 8 ⋅ ( 8 λ x ) 2 = 8 x 2 = 16
x = ± 2 , x=\pm\sqrt{2}, x = ± 2 , y = ± 1 y=\pm1 y = ± 1
Maximum values: f ( 2 , 1 ) = f ( − 2 , − 1 ) = 2 f(\sqrt{2},1)=f(-\sqrt{2},-1)=\sqrt{2} f ( 2 , 1 ) = f ( − 2 , − 1 ) = 2
Minimum values:
f ( − 2 , 1 ) = f ( 2 , − 1 ) = − 2 f(-\sqrt{2},1)=f(\sqrt{2},-1)=-\sqrt{2} f ( − 2 , 1 ) = f ( 2 , − 1 ) = − 2
Answer: maximum value is 2 \sqrt{2} 2 , minimum value is − 2 -\sqrt{2} − 2 .
Comments