f(x,y)=xy, 4x2+8y2=16.
Let g(x,y)=4x2+8y2.
We have fx=y, fy=x and gx=8x, gy=16y.
⎩⎨⎧fx=λgxfy=λgy4x2+8y2=16⎩⎨⎧y=8λxx=16λy4x2+8y2=16
x=16λy=16λ⋅8λx=128λ2x
x=0 ⇒ 128λ2=1, λ=±821
4x2+8y2=4x2+8⋅(8λx)2=8x2=16
x=±2, y=±1
Maximum values: f(2,1)=f(−2,−1)=2
Minimum values:
f(−2,1)=f(2,−1)=−2
Answer: maximum value is 2 , minimum value is −2 .
Comments