Determine
∫ (x^3 − 2x^2 + 5x) dx
a. x ^4 / 4 − 2^x3 / 3 + 5x^2 / 2 + c
b. x^4 / 4 − 3x^3 / 2 + 2x^2 / 5 + c
c. x^4 / 4 − 2x^3 / 3 +2x^2 / 5 + c
d. x^4 / 4 − 3x^3 / 2 + 5x^2 / 2 + c
∫(x3−2x2+5x)dx=x3+13+1−2x2+12+1+5x1+11+1=x44−2x33+5x22+C\int(x^3 − 2x^2 + 5x) dx =\\ \frac{x^{3+1}}{3+1}-\frac{2x^{2+1}}{2+1}+\frac{5x^{1+1}}{1+1}= \\ \frac{x^{4}}{4}-\frac{2x^{3}}{3}+\frac{5x^{2}}{2}+C∫(x3−2x2+5x)dx=3+1x3+1−2+12x2+1+1+15x1+1=4x4−32x3+25x2+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments