Answer to Question #332673 in Calculus for Olga

Question #332673

Evaluate the following integral:

∫ 3x √ 1 − 2x^2 dx

 


a.    2 √ ( 1 + 2x^2 )^3 + c


b.   √ ( 1 + 2x^2 )^3 + c


c.    1 / 2 √ ( 1 + 2 x^2)^3 + c


d.   1 / 2  3√(1 + 2x^2 ) ^3 + c



1
Expert's answer
2022-05-02T03:20:49-0400

3x12x2dx=[u=12x2,du=4xdxxdx=du4]=34udu=32u3243+C=(12x2)322+C\int 3x\sqrt{1-2x^2}dx = [u=1-2x^2, du = -4xdx \rightarrow xdx=-\cfrac{du}{4}]=-\cfrac{3}{4}\int\sqrt udu = - \cfrac{3\cdot2 u^{\frac{3}{2}}}{4\cdot 3} + C= -\cfrac{(1-2x^2)^{\frac{3}{2}}}{2}+ C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment