Evaluate the following integral:
∫ 3x √ 1 − 2x^2 dx
a. 2 √ ( 1 + 2x^2 )^3 + c
b. √ ( 1 + 2x^2 )^3 + c
c. 1 / 2 √ ( 1 + 2 x^2)^3 + c
d. 1 / 2 3√(1 + 2x^2 ) ^3 + c
∫3x1−2x2dx=[u=1−2x2,du=−4xdx→xdx=−du4]=−34∫udu=−3⋅2u324⋅3+C=−(1−2x2)322+C\int 3x\sqrt{1-2x^2}dx = [u=1-2x^2, du = -4xdx \rightarrow xdx=-\cfrac{du}{4}]=-\cfrac{3}{4}\int\sqrt udu = - \cfrac{3\cdot2 u^{\frac{3}{2}}}{4\cdot 3} + C= -\cfrac{(1-2x^2)^{\frac{3}{2}}}{2}+ C∫3x1−2x2dx=[u=1−2x2,du=−4xdx→xdx=−4du]=−43∫udu=−4⋅33⋅2u23+C=−2(1−2x2)23+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment