Evaluate the following integral:
∫ 3x √ 1 − 2x^2 dx
a. 2 √ ( 1 + 2x^2 )^3 + c
b. √ ( 1 + 2x^2 )^3 + c
c. 1 / 2 √ ( 1 + 2 x^2)^3 + c
d. 1 / 2 3√(1 + 2x^2 ) ^3 + c
"\\int 3x\\sqrt{1-2x^2}dx = [u=1-2x^2, du = -4xdx \\rightarrow xdx=-\\cfrac{du}{4}]=-\\cfrac{3}{4}\\int\\sqrt udu = - \\cfrac{3\\cdot2 u^{\\frac{3}{2}}}{4\\cdot 3} + C= -\\cfrac{(1-2x^2)^{\\frac{3}{2}}}{2}+ C"
Comments
Leave a comment