Determine the integral
∫ [(2x+2)e ^ x2+2x+3 + x^−1 / lnx ] dx
a. e ^ x2+2x+3 + ln|ln x| + c
b. e^ x2+2x+3 + ln|ln x|
c. e^x2+2x+3 – 1 / 2 [ln x] ^−2
d. e^x2+2x+3 − 1 /2 [ln x]^ −2 + c
∫[(2x+2)ex2+2x+3+1xlnx]dx==∫(2x+2)ex2+2x+3dx+∫1xlnxdx==[t=x2+2x+3,dt=(2x+2)dx,u=lnx,du=dxx]==∫etdt+∫duu=et+ln∣u∣+C=ex2+2x+3ln∣lnx∣+C\int[(2x+2)e^{x^2+2x+3} + \cfrac{1}{xlnx}]dx=\\ =\int(2x+2)e^{x^2+2x+3}dx + \int\cfrac{1}{xlnx}dx = \\ =[t=x^2+2x+3, dt=(2x+2)dx, u = lnx, du=\cfrac{dx}{x}] =\\ =\int e^tdt + \int\cfrac{du}{u} = e^t + ln|u| + C = e^{x^2+2x+3}ln|lnx| + C∫[(2x+2)ex2+2x+3+xlnx1]dx==∫(2x+2)ex2+2x+3dx+∫xlnx1dx==[t=x2+2x+3,dt=(2x+2)dx,u=lnx,du=xdx]==∫etdt+∫udu=et+ln∣u∣+C=ex2+2x+3ln∣lnx∣+C
Answer: b
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments