Determine the integral
∫ [(2x+2)e ^ x2+2x+3 + x^−1 / lnx ] dx
a. e ^ x2+2x+3 + ln|ln x| + c
b. e^ x2+2x+3 + ln|ln x|
c. e^x2+2x+3 – 1 / 2 [ln x] ^−2
d. e^x2+2x+3 − 1 /2 [ln x]^ −2 + c
"\\int[(2x+2)e^{x^2+2x+3} + \\cfrac{1}{xlnx}]dx=\\\\\n=\\int(2x+2)e^{x^2+2x+3}dx + \\int\\cfrac{1}{xlnx}dx = \\\\\n=[t=x^2+2x+3, dt=(2x+2)dx, u = lnx, du=\\cfrac{dx}{x}] =\\\\\n=\\int e^tdt + \\int\\cfrac{du}{u} = e^t + ln|u| + C = e^{x^2+2x+3}ln|lnx| + C"
Answer: b
Comments
Leave a comment