Question #332666

Determine the integral


∫ [(2x+2)e ^ x2+2x+3    + x^−1 / lnx ] dx


a.    e ^ x2+2x+3  +  ln|ln x| + c  


b.   e^ x2+2x+3 + ln|ln x| 


c.    e^x2+2x+3 – 1 / 2 [ln x] ^−2


d.   e^x2+2x+3 − 1 /2 [ln x]^ −2  + c



1
Expert's answer
2022-04-28T08:38:17-0400

[(2x+2)ex2+2x+3+1xlnx]dx==(2x+2)ex2+2x+3dx+1xlnxdx==[t=x2+2x+3,dt=(2x+2)dx,u=lnx,du=dxx]==etdt+duu=et+lnu+C=ex2+2x+3lnlnx+C\int[(2x+2)e^{x^2+2x+3} + \cfrac{1}{xlnx}]dx=\\ =\int(2x+2)e^{x^2+2x+3}dx + \int\cfrac{1}{xlnx}dx = \\ =[t=x^2+2x+3, dt=(2x+2)dx, u = lnx, du=\cfrac{dx}{x}] =\\ =\int e^tdt + \int\cfrac{du}{u} = e^t + ln|u| + C = e^{x^2+2x+3}ln|lnx| + C

Answer: b

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS