If f(x) is continuous at x=1 then
x→1limf(x)=f(1); x→1−limf(x)=f(1); x→1+limf(x)=f(1).
f(x)={C2x5Cx−6if x≤1if x>1
x→1−limf(x)=x→1limC2x=C2
x→1+limf(x)=x→1lim(5Cx−6)=5C−6
To make f(x) continuous at x=1 we should find C for which
C2=5C−6
C2−5C+6=0
C=2 ; C=3 .
Answer: C=2 or C=3.
Comments