Question #329459

A function is defined on R such that f(x) = (C^2)x when x≤1 and 5Cx-6 when x>1 . Determine the values of C so that f becomes continues on R

1
Expert's answer
2022-04-18T01:46:51-0400

If f(x) is continuous at x=1 then

limx1f(x)=f(1)\displaystyle\lim_{x\to1}f(x)=f(1); limx1f(x)=f(1)\displaystyle\lim_{x\to1^-}f(x)=f(1); limx1+f(x)=f(1)\displaystyle\lim_{x\to1^+}f(x)=f(1).


f(x)={C2xif x15Cx6if x>1f(x) = \begin{cases} C^2x &\text{if } x\le1 \\ 5Cx-6 &\text{if } x>1 \end{cases}

limx1f(x)=limx1C2x=C2\displaystyle\lim_{x\to1^-}f(x)=\displaystyle\lim_{x\to1}C^2x=C^2

limx1+f(x)=limx1(5Cx6)=5C6\displaystyle\lim_{x\to1^+}f(x)=\displaystyle\lim_{x\to1}(5Cx-6)=5C-6

To make f(x)f(x) continuous at x=1x=1 we should find CC for which

C2=5C6C^2=5C-6

C25C+6=0C^2-5C+6=0

C=2C=2 ; C=3C=3 .

Answer: C=2C=2 or C=3C=3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS