The acceleration of a particle at any time is given by a = 12e
3t
i − 8sin2tj +
4tk. If the velocity is zero at t = 0, find velocity.
The acceleration of a particle at any time is given by
"\\bold{a}=12e^{3t}\\bold{i}-8\\sin2t\\bold{j} +4t\\bold{k}" .
Velocity:
"\\bold v=\\int \\bold a dt=\\int (12e^{3t}\\bold{i}-8\\sin2t\\bold{j} +4t\\bold{k})dt=\\\\\n\\frac{12}{3}e^{3t}\\bold{i}+\\frac 82\\cos2t\\bold{j} +\\frac 42 t^2\\bold{k}+C_i\\bold{i}+C_j\\bold{j} +C_k\\bold{k}=\\\\\n4e^{3t}\\bold{i}+4\\cos2t\\bold{j} +2 t^2\\bold{k}+C_i\\bold{i}+C_j\\bold{j} +C_k\\bold{k}",
where "C_i,C_j,C_k" are const.
"\\bold v(0)=4\\bold{i}+4\\bold{j} +0\\bold{k}+C_i\\bold{i}+C_j\\bold{j} +C_k\\bold{k}=\\bold 0"
"C_i=-4" ; "C_j=-4" ; "C_k=0" .
Answer:
"\\bold v=4(e^{3t}-1)\\bold{i}+4(\\cos2t-1)\\bold{j} +2 t^2\\bold{k}"
Comments
Leave a comment