Answer to Question #329030 in Calculus for asif

Question #329030

The acceleration of a particle at any time is given by a = 12e

3t

i − 8sin2tj +


4tk. If the velocity is zero at t = 0, find velocity.


1
Expert's answer
2022-04-18T01:45:39-0400

The acceleration of a particle at any time is given by

a=12e3ti8sin2tj+4tk\bold{a}=12e^{3t}\bold{i}-8\sin2t\bold{j} +4t\bold{k} .

Velocity:

v=adt=(12e3ti8sin2tj+4tk)dt=123e3ti+82cos2tj+42t2k+Cii+Cjj+Ckk=4e3ti+4cos2tj+2t2k+Cii+Cjj+Ckk\bold v=\int \bold a dt=\int (12e^{3t}\bold{i}-8\sin2t\bold{j} +4t\bold{k})dt=\\ \frac{12}{3}e^{3t}\bold{i}+\frac 82\cos2t\bold{j} +\frac 42 t^2\bold{k}+C_i\bold{i}+C_j\bold{j} +C_k\bold{k}=\\ 4e^{3t}\bold{i}+4\cos2t\bold{j} +2 t^2\bold{k}+C_i\bold{i}+C_j\bold{j} +C_k\bold{k},

where Ci,Cj,CkC_i,C_j,C_k are const.

v(0)=4i+4j+0k+Cii+Cjj+Ckk=0\bold v(0)=4\bold{i}+4\bold{j} +0\bold{k}+C_i\bold{i}+C_j\bold{j} +C_k\bold{k}=\bold 0

Ci=4C_i=-4 ; Cj=4C_j=-4 ; Ck=0C_k=0 .

Answer:

v=4(e3t1)i+4(cos2t1)j+2t2k\bold v=4(e^{3t}-1)\bold{i}+4(\cos2t-1)\bold{j} +2 t^2\bold{k}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment