The slope of the tangent line to the function y at the point x is equal to the derivative of this function at the given point.
y’=(1+40x3−3x5)’=120x2−15x4
Now we should find the points at which y’ has maximum.
y’’=240x−60x3=0
x=−2 ; x=0 ; x=2 .
y’’(−3)=−720+27⋅60>0
y’’(−1)=−240+60<0
y’’(1)=240−60>0
y(3)=720−27⋅60<0
We have two maximums y’ at the points x=−2 and y=2 .
y’(−2)=y’(2)=120⋅(−2)2−15⋅(−2)4=240
Answer: (−2,240) and (2,240) .
Comments