Question #328181

Let F be the R²-R function defined by f(x,y)=Inxy and let r be the R-R² function defined by r(t)=(e^t;t).


1.determine the composite function F o r: (simplify your answer).


2.determine gradf (x,y) and r'(t).


3.determine the derivative function (f o r)' by


3.1.differentiating the expression obtained in (1).


3.2.using the chain rule (theorem ) compare your answer.


1
Expert's answer
2022-04-19T04:47:48-0400

1:fr(x)=ln(ett)2:gradf(x,y)=[fxfy]=[1x1y]r(t)=[(et)t]=[et1]3.1:(fr)(t)=(t+lnt)=1+1t3.2:(fr)(t)=fx(r1(t),r2(t))r1t+fy(r1(t),r2(t))r2t==1r1(t)et+1r2(t)1=etet+1t=1+1tAnswersaresame1:\\f\circ r\left( x \right) =\ln \left( e^t\cdot t \right) \\2:\\gradf\left( x,y \right) =\left[ \begin{array}{c} f'_x\\ f'_y\\\end{array} \right] =\left[ \begin{array}{c} \frac{1}{x}\\ \frac{1}{y}\\\end{array} \right] \\r'\left( t \right) =\left[ \begin{array}{c} \left( e^t \right) '\\ t'\\\end{array} \right] =\left[ \begin{array}{c} e^t\\ 1\\\end{array} \right] \\3.1:\\\left( f\circ r \right) '\left( t \right) =\left( t+\ln t \right) '=1+\frac{1}{t}\\3.2:\\\left( f\circ r \right) '\left( t \right) =\frac{\partial f}{\partial x}\left( r_1\left( t \right) ,r_2\left( t \right) \right) \frac{\partial r_1}{\partial t}+\frac{\partial f}{\partial y}\left( r_1\left( t \right) ,r_2\left( t \right) \right) \frac{\partial r_2}{\partial t}=\\=\frac{1}{r_1\left( t \right)}e^t+\frac{1}{r_2\left( t \right)}\cdot 1=\frac{e^t}{e^t}+\frac{1}{t}=1+\frac{1}{t}\\Answers\,\,are\,\,same


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS