Question #327951

8) Write the first four terms of a Maclaurin series for 𝑓(𝑥)=𝑒𝑥?

1
Expert's answer
2022-04-13T12:13:59-0400

The Taylor series of a function f (x) that is infinitely differentiable at a number aa  is the power series

f(x)=f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(x)=f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)^2+f(a)3!(xa)2+...\frac{f'''(a)}{3!}(x-a)^2+... .

When a=0a=0, the series is also called a Maclaurin series.

f(x)=exf(x)=e^x , f(0)=1f(0)=1 ;

f(x)=exf'(x)=e^x , f(0)=1f'(0)=1 ;

f(x)=exf''(x)=e^x , f(0)=1f''(0)=1 ;

f(x)=exf'''(x)=e^x , f(0)=1f'''(0)=1 .

ex=1+11!(x0)+12!(x0)2+13!(x0)3+...=e^x=1+\frac{1}{1!}(x-0)+\frac{1}{2!}(x-0)^2+\frac{1}{3!}(x-0)^3+...=1+x+12x2+16x3+...1+x+\frac12x^2+\frac16x^3+...

Answer: ex=1+x+12x2+16x3+...e^x=1+x+\frac12x^2+\frac16x^3+... .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS