Answer to Question #327471 in Calculus for Nur

Question #327471

1.Find ∫cos^2 (2x)sin x dx


2.Find ∫(b − ax)e^4x dx . Give your answer in factor form.


1
Expert's answer
2022-04-12T12:12:49-0400

1.cos2(2x)sin(x)dx=cos2(2x)d(cos(x))\int cos^2(2x)sin(x)dx=-\int cos^2(2x)d(cos(x)). Make a change of variable z=cos(x)z=cos(x). We receive:

(2z21)dz=(23z3z)+C=23(cos(x))3+cos(x)+C,CR-\int(2z^2-1)dz=-(\frac23z^3-z)+C=-\frac23(cos(x))^3+cos(x)+C,C\in{\mathbb{R}}

2.(bax)e4xdx=14be4xaxe4xdx=14be4xa(14xe4x14e4xdx)+C=14be4xa(14xe4x116e4xdx)+C,CR2.\,\int(b-ax)e^{4x}dx=\frac14be^{4x}-a\int xe^{4x}dx=\frac{1}{4}be^{4x}-a(\frac14xe^{4x}-\int \frac14e^{4x}dx)+C=\frac{1}{4}be^{4x}-a(\frac14xe^{4x}-\frac{1}{16}e^{4x}dx)+C,C\in{\mathbb{R}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment