1.Find ∫cos^2 (2x)sin x dx
2.Find ∫(b − ax)e^4x dx . Give your answer in factor form.
1.∫cos2(2x)sin(x)dx=−∫cos2(2x)d(cos(x))\int cos^2(2x)sin(x)dx=-\int cos^2(2x)d(cos(x))∫cos2(2x)sin(x)dx=−∫cos2(2x)d(cos(x)). Make a change of variable z=cos(x)z=cos(x)z=cos(x). We receive:
−∫(2z2−1)dz=−(23z3−z)+C=−23(cos(x))3+cos(x)+C,C∈R-\int(2z^2-1)dz=-(\frac23z^3-z)+C=-\frac23(cos(x))^3+cos(x)+C,C\in{\mathbb{R}}−∫(2z2−1)dz=−(32z3−z)+C=−32(cos(x))3+cos(x)+C,C∈R
2. ∫(b−ax)e4xdx=14be4x−a∫xe4xdx=14be4x−a(14xe4x−∫14e4xdx)+C=14be4x−a(14xe4x−116e4xdx)+C,C∈R2.\,\int(b-ax)e^{4x}dx=\frac14be^{4x}-a\int xe^{4x}dx=\frac{1}{4}be^{4x}-a(\frac14xe^{4x}-\int \frac14e^{4x}dx)+C=\frac{1}{4}be^{4x}-a(\frac14xe^{4x}-\frac{1}{16}e^{4x}dx)+C,C\in{\mathbb{R}}2.∫(b−ax)e4xdx=41be4x−a∫xe4xdx=41be4x−a(41xe4x−∫41e4xdx)+C=41be4x−a(41xe4x−161e4xdx)+C,C∈R
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment