Prove that the function f(x)= cosx-cos3x is periodc
f(x+2π)=cos(x+2π)+cos3(x+2π)=cos(x+2π)+cos(3x+6π)=f(x+2\pi)=cos(x+2\pi)+cos3(x+2\pi)=cos(x+2\pi)+cos(3x+6\pi)=f(x+2π)=cos(x+2π)+cos3(x+2π)=cos(x+2π)+cos(3x+6π)=
=cosx+cos3x=f(x).=cosx+cos3x=f(x).=cosx+cos3x=f(x).
Thus, f(x) is periodic with period 2π.2\pi.2π.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments