ANSWER
Let Γ \Gamma Γ be the curve defined by the equation x 2 = y 2 ( x + 1 ) 3 x^2=y^2(x+1)^3 x 2 = y 2 ( x + 1 ) 3 .
Γ = { ( x , y ) : x > − 1 , x 2 = y 2 ( x + 1 ) 3 } \Gamma=\left \{ \left ( x,y \right ):x>-1, x^{2} =y^{2}\left ( x+1 \right )^{3}\right \} Γ = { ( x , y ) : x > − 1 , x 2 = y 2 ( x + 1 ) 3 } ,
then Γ = Γ 1 ∪ Γ 2 \Gamma=\Gamma_{1}\cup\Gamma_{2} Γ = Γ 1 ∪ Γ 2 , where Γ 1 = \Gamma_{1}= Γ 1 = { ( x , f ( x ) ) ) : x > − 1 } \left \{ \left ( x,f(x)) \right ):x>-1 \right \} { ( x , f ( x )) ) : x > − 1 } , Γ 2 = { ( x , − f ( x ) ) ) : x > − 1 } , \Gamma_{2}= \left \{ \left ( x,-f(x)) \right ):x>-1 \right \}, Γ 2 = { ( x , − f ( x )) ) : x > − 1 } , f ( x ) = x ( x + 1 ) 3 2 f(x)= \frac{x}{(x+1)^{\frac{3}{2}}} f ( x ) = ( x + 1 ) 2 3 x . f ( 0 ) = 0 f(0)=0 f ( 0 ) = 0
f ′ ( x ) = ( x + 1 ) 3 2 − 3 2 x ( x + 1 ) 1 2 ( x + 1 ) 3 f'(x)=\frac { { \left( x+1 \right) }^{ \frac { 3 }{ 2 } }-\frac { 3 }{ 2 } x{ \left( x+1 \right) }^{ \frac { 1 }{ 2 } } }{ { \left( x+1 \right) }^{ 3\quad } } f ′ ( x ) = ( x + 1 ) 3 ( x + 1 ) 2 3 − 2 3 x ( x + 1 ) 2 1 = 1 2 ⋅ ( 2 − x ) ( 1 + x ) 5 2 =\frac{1}{2}\cdot \frac{(2-x)}{(1+x)^\frac{5}{2}} = 2 1 ⋅ ( 1 + x ) 2 5 ( 2 − x )
f ′ ′ ( x ) = − 1 2 ⋅ ( x + 1 ) 5 2 + 5 2 ( 2 − x ) ( x + 1 ) 3 2 ( x + 1 ) 5 = 3 4 ⋅ ( x − 4 ) ( x + 1 ) 7 2 f''(x)=-\frac { 1 }{ 2 } \cdot \frac { { \quad \left( x+1 \right) }^{ \frac { 5 }{ 2 } }+\frac { 5 }{ 2 } (2-x){ \left( x+1 \right) }^{ \frac { 3 }{ 2 } } }{ { \left( x+1 \right) }^{ 5\quad } } =\frac { 3 }{ 4 } \cdot \frac { (x-4) }{ { \left( x+1 \right) }^{ \frac { 7 }{ 2 } } } f ′′ ( x ) = − 2 1 ⋅ ( x + 1 ) 5 ( x + 1 ) 2 5 + 2 5 ( 2 − x ) ( x + 1 ) 2 3 = 4 3 ⋅ ( x + 1 ) 2 7 ( x − 4 )
In the interval ( − 1 , 2 ) (-1,2) ( − 1 , 2 ) f ′ ( x ) > 0 f'(x)>0 f ′ ( x ) > 0 , so the function f f f increases. In the interval ( 2 , + ∞ ) ( 2 ,+\infty) ( 2 , + ∞ ) f ′ ( x ) < 0 f'(x)<0 f ′ ( x ) < 0 , so the function f f f decreases. Thus m a x f ( x ) = f ( 2 ) = max f(x)=f(2)= ma x f ( x ) = f ( 2 ) = 2 3 3 \frac{2}{3\sqrt{3}} 3 3 2 .
On the graph of the function this is point B.
f ′ ′ ( x ) < 0 f''(x)<0 f ′′ ( x ) < 0 if x ∈ ( − 1 , 4 ) x\in(-1,4) x ∈ ( − 1 , 4 ) and f ′ ′ ( x ) > 0 f''(x)>0 f ′′ ( x ) > 0 if x ∈ ( 4 , + ∞ ) x\in(4, +\infty) x ∈ ( 4 , + ∞ ) .Therefore, the function f f f in the interval ( − 1 , 4 ) (-1,4) ( − 1 , 4 ) is convex upwards , in the interval ( 4 , + ∞ ) (4, +\infty) ( 4 , + ∞ ) is convex downwards (see point D on the graph of the function).
lim x → + ∞ f ( x ) = lim x → + ∞ x x 3 2 ( 1 + 1 x ) 3 2 = lim x → + ∞ 1 x 1 2 ( 1 + 1 x ) 3 2 = 0 \lim _{ x\rightarrow +\infty }{ f(x)= } \lim _{ x\rightarrow +\infty }{ \frac { x }{ { x }^{ \frac { 3 }{ 2 } }{ \left( 1+\frac { 1 }{ x } \right) }^{ \frac { 3 }{ 2 } } } = } \lim _{ x\rightarrow +\infty }{ \frac { 1 }{ { x }^{ \frac { 1 }{ 2 } }{ \left( 1+\frac { 1 }{ x } \right) }^{ \frac { 3 }{ 2 } } } = } 0 lim x → + ∞ f ( x ) = lim x → + ∞ x 2 3 ( 1 + x 1 ) 2 3 x = lim x → + ∞ x 2 1 ( 1 + x 1 ) 2 3 1 = 0
lim x → − 1 f ( x ) = lim x → − 1 x ( 1 + x ) 3 2 = − ∞ \lim _{ x\rightarrow -1 }{ f(x)= } \lim _{ x\rightarrow -1 } \frac { x }{ { \left( 1+x \right) }^{ \frac { 3 }{ 2 } } } { =-\infty } lim x → − 1 f ( x ) = lim x → − 1 ( 1 + x ) 2 3 x = − ∞ . Hence, y = 0 y=0 y = 0 is the horizontal asymptote, x = − 1 x=-1 x = − 1 is the vertical asymptote.
Comments
Leave a comment