Answer to Question #329435 in Calculus for Rohit

Question #329435

trace the curve , x^2= y^2((x+1)^3 ) , stating all the points used in process


1
Expert's answer
2022-04-18T00:23:52-0400

ANSWER

Let Γ\Gamma be the curve defined by the equation x2=y2(x+1)3x^2=y^2(x+1)^3 .

Γ={(x,y):x>1,x2=y2(x+1)3}\Gamma=\left \{ \left ( x,y \right ):x>-1, x^{2} =y^{2}\left ( x+1 \right )^{3}\right \} ,

then Γ=Γ1Γ2\Gamma=\Gamma_{1}\cup\Gamma_{2} , where Γ1=\Gamma_{1}={(x,f(x))):x>1}\left \{ \left ( x,f(x)) \right ):x>-1 \right \} , Γ2={(x,f(x))):x>1},\Gamma_{2}= \left \{ \left ( x,-f(x)) \right ):x>-1 \right \}, f(x)=x(x+1)32f(x)= \frac{x}{(x+1)^{\frac{3}{2}}} . f(0)=0f(0)=0

f(x)=(x+1)3232x(x+1)12(x+1)3f'(x)=\frac { { \left( x+1 \right) }^{ \frac { 3 }{ 2 } }-\frac { 3 }{ 2 } x{ \left( x+1 \right) }^{ \frac { 1 }{ 2 } } }{ { \left( x+1 \right) }^{ 3\quad } } =12(2x)(1+x)52=\frac{1}{2}\cdot \frac{(2-x)}{(1+x)^\frac{5}{2}}

f(x)=12(x+1)52+52(2x)(x+1)32(x+1)5=34(x4)(x+1)72f''(x)=-\frac { 1 }{ 2 } \cdot \frac { { \quad \left( x+1 \right) }^{ \frac { 5 }{ 2 } }+\frac { 5 }{ 2 } (2-x){ \left( x+1 \right) }^{ \frac { 3 }{ 2 } } }{ { \left( x+1 \right) }^{ 5\quad } } =\frac { 3 }{ 4 } \cdot \frac { (x-4) }{ { \left( x+1 \right) }^{ \frac { 7 }{ 2 } } }

In the interval (1,2)(-1,2) f(x)>0f'(x)>0 , so the function ff increases. In the interval (2,+)( 2 ,+\infty) f(x)<0f'(x)<0 , so the function ff decreases. Thus maxf(x)=f(2)=max f(x)=f(2)= 233\frac{2}{3\sqrt{3}} .

On the graph of the function this is point B.

f(x)<0f''(x)<0 if x(1,4)x\in(-1,4) and f(x)>0f''(x)>0 if x(4,+)x\in(4, +\infty) .Therefore, the function ff in the interval (1,4)(-1,4) is convex upwards , in the interval (4,+)(4, +\infty) is convex downwards (see point D on the graph of the function).

limx+f(x)=limx+xx32(1+1x)32=limx+1x12(1+1x)32=0\lim _{ x\rightarrow +\infty }{ f(x)= } \lim _{ x\rightarrow +\infty }{ \frac { x }{ { x }^{ \frac { 3 }{ 2 } }{ \left( 1+\frac { 1 }{ x } \right) }^{ \frac { 3 }{ 2 } } } = } \lim _{ x\rightarrow +\infty }{ \frac { 1 }{ { x }^{ \frac { 1 }{ 2 } }{ \left( 1+\frac { 1 }{ x } \right) }^{ \frac { 3 }{ 2 } } } = } 0

limx1f(x)=limx1x(1+x)32=\lim _{ x\rightarrow -1 }{ f(x)= } \lim _{ x\rightarrow -1 } \frac { x }{ { \left( 1+x \right) }^{ \frac { 3 }{ 2 } } } { =-\infty } . Hence, y=0y=0 is the horizontal asymptote, x=1x=-1 is the vertical asymptote.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment