trace the curve , x^2= y^2((x+1)^3 ) , stating all the points used in process
ANSWER
Let "\\Gamma" be the curve defined by the equation "x^2=y^2(x+1)^3" .
"\\Gamma=\\left \\{ \\left ( x,y \\right ):x>-1, x^{2} =y^{2}\\left ( x+1 \\right )^{3}\\right \\}" ,
then "\\Gamma=\\Gamma_{1}\\cup\\Gamma_{2}" , where "\\Gamma_{1}=""\\left \\{ \\left ( x,f(x)) \\right ):x>-1 \\right \\}" , "\\Gamma_{2}= \\left \\{ \\left ( x,-f(x)) \\right ):x>-1 \\right \\}," "f(x)= \\frac{x}{(x+1)^{\\frac{3}{2}}}" . "f(0)=0"
"f'(x)=\\frac { { \\left( x+1 \\right) }^{ \\frac { 3 }{ 2 } }-\\frac { 3 }{ 2 } x{ \\left( x+1 \\right) }^{ \\frac { 1 }{ 2 } } }{ { \\left( x+1 \\right) }^{ 3\\quad } }" "=\\frac{1}{2}\\cdot \\frac{(2-x)}{(1+x)^\\frac{5}{2}}"
"f''(x)=-\\frac { 1 }{ 2 } \\cdot \\frac { { \\quad \\left( x+1 \\right) }^{ \\frac { 5 }{ 2 } }+\\frac { 5 }{ 2 } (2-x){ \\left( x+1 \\right) }^{ \\frac { 3 }{ 2 } } }{ { \\left( x+1 \\right) }^{ 5\\quad } } =\\frac { 3 }{ 4 } \\cdot \\frac { (x-4) }{ { \\left( x+1 \\right) }^{ \\frac { 7 }{ 2 } } }"
In the interval "(-1,2)" "f'(x)>0" , so the function "f" increases. In the interval "( 2 ,+\\infty)" "f'(x)<0" , so the function "f" decreases. Thus "max f(x)=f(2)=" "\\frac{2}{3\\sqrt{3}}" .
On the graph of the function this is point B.
"f''(x)<0" if "x\\in(-1,4)" and "f''(x)>0" if "x\\in(4, +\\infty)" .Therefore, the function "f" in the interval "(-1,4)" is convex upwards , in the interval "(4, +\\infty)" is convex downwards (see point D on the graph of the function).
"\\lim _{ x\\rightarrow +\\infty }{ f(x)= } \\lim _{ x\\rightarrow +\\infty }{ \\frac { x }{ { x }^{ \\frac { 3 }{ 2 } }{ \\left( 1+\\frac { 1 }{ x } \\right) }^{ \\frac { 3 }{ 2 } } } = } \\lim _{ x\\rightarrow +\\infty }{ \\frac { 1 }{ { x }^{ \\frac { 1 }{ 2 } }{ \\left( 1+\\frac { 1 }{ x } \\right) }^{ \\frac { 3 }{ 2 } } } = } 0"
"\\lim _{ x\\rightarrow -1 }{ f(x)= } \\lim _{ x\\rightarrow -1 } \\frac { x }{ { \\left( 1+x \\right) }^{ \\frac { 3 }{ 2 } } } { =-\\infty }" . Hence, "y=0" is the horizontal asymptote, "x=-1" is the vertical asymptote.
Comments
Leave a comment