y = 3 x 2 / 3 − 2 x , [ − 1 , 1 ] y ′ ( x ) = 2 x − 1 / 3 − 2 = 2 x 3 − 2 y=3x^{2/3}-2x, \qquad [-1,1]\\
\begin{aligned}
y'(x) = &2x^{-1/3}-2\\
=& \frac{2}{\sqrt[3]{x}}-2
\end{aligned} y = 3 x 2/3 − 2 x , [ − 1 , 1 ] y ′ ( x ) = = 2 x − 1/3 − 2 3 x 2 − 2 Since y ′ ( x ) y'(x) y ′ ( x ) exists for all x = 0 x={0} x = 0 , the critical numbers of occur when y ′ ( x ) = 0 y'(x)=0 y ′ ( x ) = 0 and x = 0 x=0 x = 0
2 x 3 − 2 = 0 → 2 x 3 = 2 → x 3 = 1 → x = 1 y ( 1 ) = 1 y ( 0 ) = 0 \frac{2}{\sqrt[3]{x}}-2=0 \rightarrow \frac{2}{\sqrt[3]{x}}=2\rightarrow \sqrt[3]{x}=1 \rightarrow x=1\\
y(1)=1\\
y(0)=0 3 x 2 − 2 = 0 → 3 x 2 = 2 → 3 x = 1 → x = 1 y ( 1 ) = 1 y ( 0 ) = 0 The values at the endpoints of the interval are:
y ( − 1 ) = 5 y(-1)=5 y ( − 1 ) = 5 Comparing these three numbers, we see that the absolute maximum value is y ( − 1 ) = 5 y(-1)=5 y ( − 1 ) = 5 and the absolute minimum value is y ( 0 ) = 0 y(0)=0 y ( 0 ) = 0
Comments