Question #321290

Show whether the following equation are exact and hence solve the equation.


a) 2x(ye^x² -1)dx + e^x²dy= 0


b) ( 6x⁵y³ + 4x³y⁵) dx + (2x⁶y² - 5x⁴y⁴) dy =0

1
Expert's answer
2022-05-03T06:44:23-0400

a)2x(yex21)dx+ex2dy=0a) 2x(ye^{x^2}-1)dx+e^{x^2}dy =0

M(x,y)=2x(yex21)M(x,y)=2x(ye^{x^2}-1) and N(x,y)=ex2N(x,y)=e^{x^2}

My=2xex2=NxM_y=2xe^{x^2}=N_x

The given differential equation is exact.

M(x,y)dx=yex2x2+g(y)\int M(x,y)dx=ye^{x^2}-x^2+g(y)

N(x,y)dy=yex2+h(x)\int N(x,y)dy =ye^{x^2}+h(x)

Answer: f(x,y)=yex2x2+C.f(x,y)=ye^{x^2}-x^2+C.


b)(6x5y3+4x3y5)dx+(2x6y25x4y4)dy=0b) (6x^5y^3+4x^3y^5)dx+(2x^6y^2-5x^4y^4)dy=0

M(x,y)=6x5y3+4x3y5M(x,y)=6x^5y^3+4x^3y^5 and N(x,y)=2x6y25x4y4N(x,y)=2x^6y^2-5x^4y^4

My=18x5y2+20x3y4M_y=18x^5y^2+20x^3y^4 and Nx(x,y)=12x5y220x3y4N_x(x,y)=12x^5y^2-20x^3y^4

MyNxM_y\neq N_x

The given differential equation is not exact.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS